Exhibit 'F'

ENGINEERING III PROGRAM

22 May 2017

TABLE OF CONTENTS

- I. INTRODUCTION
 - i. DEAN'S INTRODUCTION P. 4
 - ii. PROJECT TEAM
- II. PROGRAM SUMMARY
 - i. PROPOSED PROGRAM P. 7
- III. LABORATORY TYPES P. 10
 - i. STRUCTURAL MATERIALS
 - ii. HIGH RESOLUTION ELECTRON MICROSCOPY
 - iii. METALORGANIC CHEMICAL VAPOR DEPOSITION (MOCVD)
 - iv. MOLECULAR BEAM EPITAXY (MBE)
 - v. INORGANIC, SOFT, MACROMOLECULAR MATERIALS
 - vi. ELECTRONICS & PHOTONICS (ECE)
 - vii. MATERIALS & INTERFACES (ChE)

IV. ROOM LIST

P. 116

- i. NON-LAB SPACE
- ii. LAB SPACE
- V. APPENDIX

P. 125

- i. RELEASED SPACE
- ii. MOCVD & MBE ADJACENCY STUDY
- iii. EXISTING SPACE PROGRAM

I. INTRODUCTION

DEAN'S INTRODUCTION

The College of Engineering at UC Santa Barbara is a mid-sized college that is consistently ranked among the upper echelon of engineering schools in the world. We are an interdisciplinary culture of innovation, committed to developing new technology and adding value to the economy in our region, state, and the world. COE is proven to be one of the most successful public-private research partnership environments in the country and a hotbed of new intellectual property.

The College of Engineering offers undergraduate and graduate degree programs in five departments and several affiliated programs. Our academic departments are Chemical Engineering, Computer Science, Electrical & Computer Engineering, Materials, and Mechanical Engineering. Our affiliated programs include a unique Technology Management Program, which offers training, academic programs, and competitions for the business side of engineering; Media Arts & Technology, offering graduate programs and research integrating digital and visual arts with technology; and interdisciplinary graduate programs in Biomolecular Science & Engineering and Computational Science & Engineering. In addition to departments and programs, there are dozens of engineering research centers and institutes affiliated with the College, our departments, and/or our faculty.

The College of Engineering is ranked the #1 public university in the world for engineering research citation impact (Leiden, 2015, 2016). Our Materials graduate program is ranked #1 in the nation among public universities (US News, 2016, and NRC), and our Chemical Engineering program is consistently ranked in the top 5. All of our graduate research programs were ranked in the top 5 for their disciplines (NRC, 2010). Engineering is home to the west coast hub of AIM Photonics, a national photonics technology manufacturing initiative, as well as one of the top NSF Materials Research Science & Engineering Centers in the country, and more.

Our faculty consists of three Nobel laureates, 29 members of the National Academy of Engineering, seven names among the ISI Highly Cited index, seven fellows of the National Academy of Inventors. Many faculty who have won technical awards in the Oscars, Emmys, and more.

Sufficient, quality space, especially state-of-the-art laboratory space, is essential if the College of Engineering is to continue to hire and retain top faculty which, in turn, are critical to our teaching and research mission and continued recognition and rankings. Currently the COE occupies approximately 289,240 asf in 20 buildings across campus. Sixty-six percent of COE space is more than 30 years old. Age, coupled with quality of space, continues to be problematic as research in engineering continues to become more complex and specific in its instrumentation and equipment needs, and also requires more specialized infrastructure to meet those needs, as well as the ever-changing code requirements. In addition to quality of space, each COE department has a minimum of four locations on campus with one department dispersed in eleven separate locations. This fragmenting of departments creates discontinuity that negatively impacts departmental operations and potential in almost every aspect, including faculty and student productivity, collaboration, departmental community, student recruiting, faculty hiring, and instruction.

DEAN'S INTRODUCTION - CONTINUED

The College of Engineering worked with the Office of Budget and Planning to develop an overall College-wide Space Assessment. This model shows a current space deficit of 197,958 asf. This unmet need is based on 2015-16 faculty, student (both graduate and undergraduate), post doc, staff and visitors, it does NOT include growth projections given the current authorized recruitments nor future anticipated growth based on the campus' overall growth. In addition, because we are hiring the very best faculty, who are recruited by others, we are facing an increase in the need for lab space for their large research groups to function. This increase is seen time and time again in both retention cases and new recruitments.

The campus recognized the space need for the College of Engineering and as a result the Engineering III Building was placed on the Campus' 10 year Capital Plan. Accordingly, a comprehensive Space Plan around a new 75,000 asf Engineering III Building, was created to begin to mitigate some of the issues discussed above. As documented in this report, the Materials Department, the Electronics & Photonics group within Electrical and Computer Engineering and a small portion of Chemical Engineering will relocate to Engineering III, leaving released space in Harold Frank Hall, Engineering II and the Engineering Sciences Building. This released space will be distributed among the COE departments to help offset their current unmet space need and position them in a more cohesive alignment of space. While this new building is just the beginning in addressing the College's overall unmet space need, it is a great addition to the current space inventory.

In summary, space, especially state-of-the art research labs, is a key resource that is needed for the College to continue to conduct quality research, mentor graduate students to maintain our high rankings, reputation and continue to grow.

-Rod Alferness, Dean of the College of Engineering

The findings presented here are the result of a series of extended working meetings with the College of Engineering and the LAB Life. Science. Architecture. consulting firm. The highest priority of these meetings was the specification of high-performace research laboratory spaces. High-performance research laboratories require excellent environmental controls, utilities, and services. Laboratory types, quantities, and their detailed specifications are spelled out in this document and must be properly documented in the subsequent stages of the design process.

PROJECT TEAM

UCSB College of Engineering

Rod Alferness, Dean, College of Engineering

Tresa Pollock, Department Chair, Materials Michael Chabinyc, Associate Chair, Materials Steve DenBaars, Distinguished Professor, Materials Dan Gianola, Associate Professor, Materials Chris Palmstrøm, Distinguished Professor, Materials Jim Speck, Distinguished Professor, Materials Stephen Wilson, Associate Professor, Materials Mark Cornish, Principal Development Engineer, Materials Aidan Taylor, Associate Project Scientist, Materials Kurt Olsson, Principal Development Engineer, Materials Deryck Stave, Principal Development Engineer, Materials Chris Torbet, Research Specialist, Materials Dawn McTague, Management Services Officer, Materials

Joao Hespanha, Department Chair, Electrical and Computer Engineering Jim Buckwalter, Professor, Electrical and Computer Engineering Jonathan Klamkin, Associate Professor, Electrical and Computer Engineering Jon Schuller, Assistant Professor, Electrical and Computer Engineering Stacia Keller, Principal Development Engineer, Electrical and Computer Engineering Robin Jenneve, Academic Business Officer, Electrical and Computer Engineering

Rachel Segalman, Department Chair, Chemical Engineering

Ambuj Singh, Department Chair, Computer Science Giovanni Vigna, Professor, Computer Science

Chris LaVino, Assistant Dean Building Construction & Space Management **Rob Callaway**, Multimedia and Computing Facilities Manager

Mark Nocciolo, Acting Director Capital Development Carolyn Franco, Associate Educational Facilities Planner

LAB Life. Science. Architecture, Inc.

Mark Reed, Principal Michael P. Maloof, Architect

II. PROGRAM SUMMARY

PROPOSED PROGRAM - NEW ENGINEERING III BUILDING

The new Engineering III building will house the most sensitive and high-performance programs in the College of Engineering, including a variety of research labs for the Materials (MAT), Electrical & Computer Engineering (ECE), and Chemical Engineering (ChE) departments. To support these labs, new non-lab space will also be required, including office space, community and conference space, seminar space, and administrative support. The proposed program prioritizes the much needed, high value laboratory space in a 60% lab to 40% non-lab ratio, with the Materials department allotted roughly 70% of the program. The remaining program space is shared between the Electrical & Computer Engineering (25%) and Chemical Engineering (5%) departments.

SPACE TYPE	ASF
Office	32,050
Lab	42,966
TOTAL	75,016

DEPARTMENT		BAYS	BAY SIZE	ASF
MAT	Non-Lab Space			21,330
ECE	Non-Lab Space			10,150
ChE	Non-Lab Space			570
MAT	Lab Space	91.20	330.00	30,096.00
ECE	Lab Space	33.00	330.00	10,890.00
ChE	Lab Space	6.00	330.00	1,980.00
Total		130.20		75,016

PROPOSED PROGRAM - NEW ENGINEERING III BUILDING

Within the proposed program, the new research laboratory space is organized into five major groups, spanning the three primary departments (Materials, Electrical & Computer Engineering, Chemical Engineering) that will occupy the new building. These groups include the Electronics & Photonics group, the Structural Materials group, and the Inorganic, Soft, and Macromolecular Materials groups within the Materials department; the Electronics & Photonics group within the Electrical & Computer Engineering department; and the Materials & Interfaces group within the Chemical Engineering department. The distribution of program space is summarized in the table below.

	DEPARTMENT	BAYS	ASF
MAT	Electronics & Photonics	32.2	10,626
ECE	Electronics & Photonics	33	10,890
MAT	Inorganic, Soft, Macro	22	7,260
MAT	Structural	37	12,210
ChE	Materials & Interfaces	6	1,980
	TOTAL	130.2	42,966
• M	AT (Electronics & Photonics) AT (Structural) ECE (Electronics & Photonics) ChE (Materials & Interfaces)	MAT (Inorganic)	c, Soft, Macro)

NOTE: Bay size is based on 330 assignable square feet. This bay size is derived from an 11ft by 30ft working grid for the purposes of this exercise.

III. LABORATORY TYPES

PROPOSED PROGRAM - NEW ENGINEERING III BUILDING

The proposed research laboratory program for the new building is composed of several highperformance lab types. The lab types include: General Labs, Wet Labs, Synthesis Labs, Laser Labs, Structural Labs, Characterization Labs, High Resolution Electron Microscopy Labs, Metalorganic Chemical Vapor Deposition (MOCVD) Labs, Molecular Beam Epitaxy (MBE) Labs, Control Rooms, and Pump Closets. The distribution of these lab types across the five research groups is summarized in the table below. The following pages describe in detail the space allocations, architectural layouts in floor plan and in section, and the environmental room criteria for each laboratory type.

LA	BORATORY TYPES												
		General Lab	Wet Lab	Synthesis Lab	Laser Lab	Structural Lab	Characterization Lab	Control Room	Pump Closet	Microscopy Lab	MOCVD Lab	MBE Lab	TOTALS
		Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays
MAT	Electronics & Photonics	5	0	0	0	0	0	0	7	0	10.2	10	32.2
ECE	Electronics & Photonics	2	0	0	31	0	0	0	0	0	0	0	3
MAT	Inorganic Materials	0	0	16	0	0	5	0	1	0	0	0	2
ChE	Materials and Interfaces	0	6	0	0	0	0	0	0	0	0	0	
MAT	Structural Materials	10	0	0	9	12	0	0.5	4.00	1.5	0	0	3
	Total	17	6	16	40	12	5	0.5	12	1.5	10.2	10	130.

NOTE: Bay size is based on 330 assignable square feet. This bay size is derived from an 11ft by 30ft working grid for the purposes of this exercise.

i. STRUCTURAL MATERIALS

STRUCTURAL LAB

Structural materials research focuses on emerging high-temperature and lightweight materials (including advanced oxides, carbides, and metallic alloys along with protective coatings), biological and bio-inspired materials, as well as novel multilayered, fibrous and hybrid architectures. Novel synthesis and processing routes enable these classes of materials; these processing approaches generally require high power density furnaces, lasers or electron beam systems coupled physically large vacuum chambers. High temperature mechanical characterization is also an essential element of advancing these classes of materials.

STRUCTURAL LAB - (3) BAYS - 990 ASF

STRUCTURAL LAB - SECTIONS

Laboratory Performance Criteria

Structural Lab Laboratory Type: **Heavy Processing** Laboratory Function: Description of Activities: Casting, Crystal Growth, Hot Press, Mechanical Behavior, Thin Films, Furnaces

Vibration Control

Temperature Control

Allowable Maximum Rate of Temperature Fluctuation

A	cousti	c Control	Α	ir Qua	lit
	NC-15	TEM / Recording		ISO 3	1
	NC-20	SEM		ISO 4	1
	NC-25	Dil Fridge		ISO 5	1
	NC-30	High Perf Lab		ISO 6	1
	NC-35	Conference		ISO 7	1
	NC-40	Private Office		ISO 8	1
	NC-45	Open Office		No Cla	ss
	NC-50	Laboratory		Lamina	ar I
	No Rec	uirement		Movea	ble

y 0

00 ,000, 0.000 00.000 ification Flow □ Moveable T-stat

Humidity Control

- **30%-50% RH** □ 30%-50% RH Settable
- □ No Humidification
- Return Air Allowed
- Local FCU (Remote)
- □ Positive Pressure
- Negative Pressure □ +/-5% RH
- Electromagnetic Interference (EMI) Control
- 100 nT RMS (300 nTp-p): General High Performance Lab □ 35 nT RMS (100 nTp-p): **Dilution Refrigerator Lab** □ 18 nT RMS (50 nTp-p): E Beam / FIB □ 11 nT RMS (30 nTp-p): SEM / TEM □ 4 nT RMS (10nTp-p): FEI Titan / JEOL 2100F

Infrastructure

- Clean Dry Air House Vacuum House Nitrogen (gas) □ House Helium (gas) Cylinder Gas Manifolds Qty 2-6 Helium Recovery (Vertical) Other pump closet 480V 3p Required
- Hot Water Cold Water RODI 18 meg ohm Eyewash (Tempered Water)
 - Safety Shower (Tempered Water)
 - □ Other
 - Data (Fiber) Data (Copper)

Power Density

- 5 W/sf (2W/sf demand) □ 10 W/sf (5W/sf demand)
- □ 20 W/sf (10W/sf demand)
- □ 30 W/sf (15W/sf demand) 50 W/sf (25W/sf demand)
- □ 80 W/sf (40 W/sf demand) □ 100 W/sf (50W/sf demand) *300 W/sf
- Pump Power
- Instrument Power
- Clean Ground
- Emergency Power

Architectural

- □ ESD Flooring
- □ Seamless Flooring
- Cryo Safe Flooring
- Chemical Resistant Flooring
- □ Wall Mounts Ceiling Mounts
- Double Door
- Windows Allowed
- *10ft coiling door
- Fume Hood
- Snorkel Exhaust
- □ Biological Safety Cabinet
- HEPA Filter
- ULPA Filter
- Process Chilled Water
- 50-75 Percent of Power Demand
- □ 12V DC LED Lighting
- Standard LED Lighting

LASER LAB (STRUCTURAL)

The ability to print hierarchically complex materials layer-by-layer or voxel by voxel on demand will enable future innovations at the intersection of materials and structures. Emerging additive manufacturing and 3D printing approaches employ multiple classes of lasers and/or electron beams contained in vacuum or inert gas chambers. Flexible space for new system designs is an essential feature of this laboratory space. Capabilities for safe handling metallic and ceramic powders is an additional element of this laboratory space.

NOTE: CONFIGURATION OF CURTAINS AND LASER TABLES TO BE DETERMINED BY EACH RESEARCHER

LASER LAB (STRUCTURAL) - (3) BAYS - 990 ASF

NOTE: CONFIGURATION OF CURTAINS AND LASER TABLES TO BE DETERMINED BY EACH RESEARCHER

LASER LAB (STRUCTURAL) - (2) BAYS - 660 ASF

LASER LAB (STRUCTURAL) - SECTIONS

Laboratory Performance Criteria

Laser Lab (Structural) Laboratory Type: Advanced Laser Optics Laboratory Function: Description of Activities: Single Room with (3) Laser Curtain Areas & Prep Area

Vibration Control

Temperature Control

Allowable Maximum Rate of Temperature Fluctuation

NOTE: Local Remote FCU to have 50% over-capacity, to be water based and controlled by user.

Acoustic Control	Air Quality	Humidity Control	Power Density
 NC-15 TEM / Recording NC-20 SEM NC-25 Dil Fridge NC-30 High Perf Lab NC-35 Conference NC-40 Private Office NC-45 Open Office NC-50 Laboratory No Requirement 	 □ ISO 3 1 □ ISO 4 10 □ ISO 5 100 □ ISO 6 1,000 □ ISO 7 10,000 □ ISO 8 100,000 □ No Classification ■ Laminar Flow □ Moveable T-stat 	 30%-50% RH 30%-50% RH Settable No Humidification Return Air Allowed Local FCU (Remote) Positive Pressure Negative Pressure +/- 2% RH 	 5 W/sf (2W/sf demand) 10 W/sf (5W/sf demand) 20 W/sf (10W/sf demand) 30 W/sf (15W/sf demand) 50 W/sf (25W/sf demand) 80 W/sf (40 W/sf demand) 100 W/sf (50W/sf demand) Pump Power *in adjacent closet Instrument Power

Electromagnetic Interference (EMI) Control

100 nT RMS (300 nTp-p): General High Performance Lab **35 nT RMS (100 nTp-p)**: **Dilution Refrigerator Lab** □ 18 nT RMS (50 nTp-p): E Beam / FIB □ 11 nT RMS (30 nTp-p): SEM / TEM □ 4 nT RMS (10nTp-p): FEI Titan / JEOL 2100F

Infrastructure

- Clean Dry Air House Vacuum House Nitrogen (gas) □ House Helium (gas) Cylinder Gas Manifolds Qty 2 □ Helium Recovery (Vertical) □ Other
- □ 480V 3p Required
- Hot Water Cold Water RODI Eyewash (Tempered Water) Safety Shower (Tempered Water) Other Laser in use light Data (Fiber) Data (Copper)

- Clean Ground Emergency Power *UPS

Architectural

- ESD Flooring
- □ Seamless Flooring
- Cryo Safe Flooring
- Chemical Resistant Flooring
- Wall Mounts
- Ceiling Mounts Double Door
- □ Windows Allowed
- □ Fume Hood
- Snorkel Exhaust
- Biological Safety Cabinet
- ☐ HEPA Filter
- ULPA Filter *at table
- Process Chilled Water 50 Percent of Power Demand
- 12V DC LED Lighting
- □ Standard LED Lighting

BLAST LAB

Modern materials processing and crystal growth techniques often harness the active management of materials synthesis under extreme environments. Ultra high purity bulk crystal growth of quantum materials, refractory oxides, and functional electronic materials requires simultaneous access to high temperatures and high pressures in an actively monitored/ controlled growth environment. To achieve this, high power laser heating inside of high pressure vessels is required, and a lab environment capable of supporting high performance laser optics and blast shielding for user protection is needed. Killowat levels of laser power at a variety of wavelengths spanning from optical to infrared and pressures up to 15,000 psi may be used.

BLAST LAB - (2) BAYS - 660 ASF

BLAST LAB - SECTION

Laboratory Performance Criteria

Blast Lab (Structural) Laboratory Type: Laboratory Function: Advanced Laser Optics (Blast Furnace) Description of Activities: Single Room with Secondary Laser Protection & Prep Area

Vibration Control

Temperature Control

Allowable Maximum Rate of Temperature Fluctuation

NOTE: Local Remote FCU to have 50% over-capacity, to be water based and controlled by user.

Acoustic Control	Air Quality	Humidity Control	Power Density
 NC-15 TEM / Recording NC-20 SEM NC-25 Dil Fridge NC-30 High Perf Lab NC-35 Conference NC-40 Private Office NC-45 Open Office NC-50 Laboratory No Requirement 	 □ ISO 3 1 □ ISO 4 10 □ ISO 5 100 □ ISO 6 1,000 □ ISO 7 10,000 □ ISO 8 100,000 □ No Classification ■ Laminar Flow □ Moveable T-stat 	 30%-50% RH 30%-50% RH Settable No Humidification Return Air Allowed Local FCU (Remote) Positive Pressure Negative Pressure +/- 2% RH 	 5 W/sf (2W/sf demand) 10 W/sf (5W/sf demand) 20 W/sf (10W/sf demand) 30 W/sf (15W/sf demand) 50 W/sf (25W/sf demand) 80 W/sf (40 W/sf demand) 100 W/sf (50W/sf demand) Pump Power *in adjacent closet Instrument Power

Electromagnetic Interference (EMI) Control

 100 nT RMS (300 nTp-p): 35 nT RMS (100 nTp-p): 18 nT RMS (50 nTp-p): 11 nT RMS (30 nTp-p): 4 nT RMS (10nTp-p): 	General High Performance Lab Dilution Refrigerator Lab E Beam / FIB SEM / TEM FEI Titan / JEOL 2100F
--	--

Infrastructure

Clean Dry Air House Vacuum House Nitrogen (gas) □ House Helium (gas) Cylinder Gas Manifolds Qty_2_ □ Helium Recovery (Vertical) □ Other

Hot Water Cold Water RODI Eyewash (Tempered Water) Safety Shower (Tempered Water) Other Laser in use light Data (Fiber) Data (Copper)

- Clean Ground
- Emergency Power *UPS

Architectural

- ESD Flooring
- □ Seamless Flooring
- Cryo Safe Flooring
- Chemical Resistant Flooring
- Wall Mounts
- Ceiling Mounts
- Double Door
- □ Windows Allowed

*blast resistant perimeter walls

- □ Fume Hood
- Snorkel Exhaust
- Biological Safety Cabinet
- HEPA Filter
- ULPA Filter *at table
- Process Chilled Water 50 Percent of Power Demand
- 12V DC LED Lighting
- □ Standard LED Lighting

GENERAL LAB (STRUCTURAL)

Emerging research areas in transportation, energy conversion, and nanotechnology demand structural materials that can withstand extreme environments of pressure, temperature, and radiation and heat fluxes. Central to these goals are methods and tools for the synthesis, fabrication, and characterization of materials. Synthesis approaches include wet processing, powder-based synthesis, and corresponding specimen preparation and fabrication including precision cutting, grinding, polishing and electro-discharge machining. Characterization methods need to provide multi-modal information using high-resolution optical microscopes and laser scanning imaging and spectroscopy equipment. One laboratory will house novel micro- and nanomechanical testing tools that measure nN forces and sub-nm displacements on materials with high-fidelity. To accommodate modern tools, the labs require house air and gas, vacuum, water, and relatively high power density.

GENERAL LAB (STRUCTURAL) - (1) BAY - 330 ASF

GENERAL LAB (STRUCTURAL) - (2) BAYS - 660 ASF

GENERAL LAB (STRUCTURAL) - SECTIONS

Laboratory Performance Criteria

Laboratory Type: General Lab (Structural) Laboratory Function: Support Rooms Description of Activities: Specimen Prep, Wet Process, Ceramic Process, Matl Characterization, EDM, 3D Printing

Vibration Control

Acoustic Control

NC-15	TEM / Recording
NC-20	SEM
NC-25	Dil Fridge
NC-30	High Perf Lab
NC-35	Conference
NC-40	Private Office
NC-45	Open Office
NC-50	Laboratory
No Rec	luirement

Air Quality

Electromagnetic Interference (EMI) Control

	100 nT BMS (300 nTn-n)
Ξ.	25 pT DMO (100 pTp p)
	35 MT RIVIS (100 MTP-P).
	18 nT RMS (50 nTp-p):
	11 nT RMS (30 nTp-p):
	4 nT RMS (10nTp-p):

General High Performance Lab Dilution Refrigerator Lab E Beam / FIB SEM / TEM FEI Titan / JEOL 2100F

Infrastructure

Clean Dry Air Hot Water House Vacuum Cold Water House Nitrogen (gas) RODI □ House Helium (gas) Eyewash (Tempered Water) Cylinder Gas Manifolds Qty 2 Safety Shower (Tempered Water) □ Helium Recovery (Vertical) Other Data (Fiber) □ Other □ 480V 3p Required Data (Copper)

/

Set Point 68-72°F

Temperature Control

+10°F / -2°F +/- 2°F

Allowable Temperature Range off Set Point

Humidity Control

No Humidification

- Local FCU (Remote)
- Positive Pressure
- Negative Pressure
 +/- 2% RH
- +/- 2% RH

*settable humidity control at 3D printing

control at 3D printing

Power Density

□ 5 W/sf (2W/sf demand) □ 10 W/sf (5W/sf demand) □ 20 W/sf (10W/sf demand) □ 30 W/sf (15W/sf demand) 50 W/sf (25W/sf demand) 80 W/sf (40 W/sf demand) □ 100 W/sf (50W/sf demand) Pump Power Instrument Power Clean Ground Emergency Power Architectural ESD Flooring Seamless Flooring Cryo Safe Flooring *at specimen prep **Chemical Resistant Flooring** Wall Mounts **Ceiling Mounts** Double Door Windows Allowed Fume Hood

+/- 0.1°F

+/- 1°F

Snorkel Exhaust
 Biological Safety Cabinet
 HEPA Filter
 ULPA Filter
 Process Chilled Water
 25 Percent of Power Demand
 12V DC LED Lighting
 Standard LED Lighting

Life. Science. Architecture, Inc.

PUMP CLOSET

The pump closet supports many types of labs by providing segregated space for placement of noisy peripheral equipment.

PUMP CLOSET - (1) BAY - 330 ASF

PUMP CLOSET - SECTIONS

Laboratory Performance Criteria

Laboratory Type:Pump ClosetLaboratory Function:Support RoomDescription of Activities:Vibration and acoustically isolated room for pumps and chillers and local FCU

Vibration Control

Temperature Control

Allowable Maximum Rate of Temperature Fluctuation

Acoustic	Air Q	
□ NC-15	TEM / Recording	🗆 ISO
NC-20	SEM	🗆 ISO
NC-25	Dil Fridge	🗆 ISO
NC-30	High Perf Lab	🗆 ISO
NC-35	Conference	🗆 ISO
NC-40	Private Office	🗆 ISO
NC-45	Open Office	No (
NC-50	Laboratory	🗆 Lam
No Rec	uirement	

ir Quality

□ ISO 3 1 □ ISO 4 10 □ ISO 5 100 □ ISO 6 1,000 □ ISO 7 10,000 □ ISO 8 100,000 ■ No Classification □ Laminar Flow □ Moveable T-stat ■ Pump Exhaust

Humidity Control

□ 30%-50% RH

Electromagnetic Interference (EMI) Control

100 nT RMS (300 nTp-p): General High Performance Lab
 35 nT RMS (100 nTp-p): Dilution Refrigerator Lab
 18 nT RMS (50 nTp-p): E Beam / FIB
 11 nT RMS (30 nTp-p): SEM / TEM
 4 nT RMS (10nTp-p): FEI Titan / JEOL 2100F

Infrastructure

- Clean Dry Air
 House Vacuum
 House Nitrogen (gas)
 House Helium (gas)
 Cylinder Gas Manifolds Qty_2
 Helium Recovery (Vertical)
 Other Pump Exhaust
 480V 3p Required
- Edalli / FIB EM / TEM El Titan / JEOL 2100F
 - ☐ Hot Water
 - □ Cold Water

 - Eyewash (Tempered Water)
 - □ Safety Shower (Tempered Water)
 - □ Other ____
 - Data (Fiber)
 - Data (Copper)

Power Density

- 5 W/sf (2W/sf demand)
- □ 10 W/sf (5W/sf demand) □ 20 W/sf (10W/sf demand)
- \square 30 W/sf (15W/sf demand)
- \Box 50 W/sf (25W/sf demand)
- 80 W/sf (40 W/sf demand)
- 100 W/sf (50W/sf demand)
- Pump Power
- Instrument Power
- Clean Ground
- Emergency Power

Architectural

- ESD Flooring
- □ Seamless Flooring
- Cryo Safe Flooring
- Chemical Resistant Flooring
- Wall Mounts
- Ceiling MountsDouble Door
- Windows Allowed
- □ Fume Hood
- □ Snorkel Exhaust
- Biological Safety Cabinet
- HEPA Filter
- ULPA Filter
- Process Chilled Water 75% Percent of Power Demand
- 12V DC LED Lighting
- □ Standard LED Lighting

ii. HIGH RESOLUTION ELECTRON MICROSCOPY

HIGH RESOLUTION ELECTRON MICROSCOPY LAB

The forefront of materials research centers on exquisite manipulation of matter at the atomic scale to elicit unprecedented electrical, magnetic, mechanical, and optical properties. Controlling the properties of materials with atomic fidelity requires the most modern electron microscopes with sub-atomic imaging wavelengths, but conventional microscopes, and thus progress on new materials, are hindered by lens aberrations. The High Resolution Electron Microscopy Lab will house the newest generation aberration-corrected scanning/transmission electron microscope for interrogating advanced materials. The lab demands exacting vibration control, temperature control and stability, cancellation of electromagnetic interference, clean air quality, humidity control, and functional room layout to house the microscope. Additional requirements include fiber-based data connectivity and 3-phase high voltage power with separate grounding.

HIGH RESOLUTION ELECTRON MICROSCOPY LAB - (2.5) BAYS - 825 ASF

HIGH RESOLUTION ELECTRON MICROSCOPY LAB - SECTIONS

High Performance Electron Microscopy Lab Laboratory Type: Laboratory Function: Microscopy lab Description of Activities: Aberration Correcting S/TEM (FEI Titan Cubed Themis)

Vibration Control

Temperature Control

Air Quality **Humidity Control Power Density** Acoustic Control NC-15 TEM / Recording □ ISO 3 1 **30%-50% RH** □ 5 W/sf (2W/sf demand) □ NC-20 SEM □ ISO 4 10 □ 30%-50% RH Settable □ 10 W/sf (5W/sf demand) □ NC-25 Dil Fridge □ ISO 5 100 □ No Humidification □ 20 W/sf (10W/sf demand) NC-30 High Perf Lab □ ISO 6 1,000 □ 30 W/sf (15W/sf demand) □ NC-35 Conference □ ISO 7 10,000 Return Air Allowed 50 W/sf (25W/sf demand) □ NC-40 Private Office Local FCU (Remote) 80 W/sf (40 W/sf demand) ISO 8 100,000 □ NC-45 Open Office □ Positive Pressure No Classification □ NC-50 Laboratory Pump Power □ Laminar Flow Negative Pressure □ No Requirement □ Moveable T-stat □ +/- 5% RH Instrument Power Clean Ground

Electromagnetic Interference (EMI) Control

□ 100 nT RMS (300 nTp-p): General High Performance Lab □ 35 nT RMS (100 nTp-p): **Dilution Refrigerator Lab** E Beam / FIB □ 18 nT RMS (50 nTp-p): □ 11 nT RMS (30 nTp-p): SEM / TEM ■ 4 nT RMS (10nTp-p): FEI Titan / JEOL 2100F

*nonmagnetic ductwork & door hardware

Infrastructure

- Clean Dry Air □ House Vacuum □ House Nitrogen (gas) □ House Helium (gas) Cylinder Gas Manifolds Qty □ Helium Recovery (Vertical) Other <u>Pump exhaust</u> □ 480V 3p Required *208V 3p 5wire
- Hot Water □ Cold Water RODI Eyewash (Tempered Water) Safety Shower (Tempered Water) Other Room in use light Data (Fiber) Data (Copper)

- □ 100 W/sf (50W/sf demand)
- Emergency Power

Architectural

- ESD Flooring
- Seamless Flooring
- Cryo Safe Flooring
- Chemical Resistant Flooring Wall Mounts
- Ceiling Mounts
- Double Door
- □ Windows Allowed
- □ Fume Hood
- □ Snorkel Exhaust
- Biological Safety Cabinet
- HEPA Filter
- ULPA Filter
- Process Chilled Water 75% Percent of Power Demand
- 12V DC LED Lighting
- □ Standard LED Lighting

CONTROL ROOM

The Control Room is an ante-room within the High Resolution Electron Microscopy lab. This room allows for remote viewing, remote control and data acquisition without disturbing the performance criteria of the microscope.

CONTROL ROOM - (0.5) BAYS - 165 ASF

CONTROL ROOM - SECTIONS

Laboratory Type: Control Room Laboratory Function: Support Room Description of Activities: Remote Viewing, Data Analysis, Measurement, Computing

Vibration Control

Humidity Control

No Humidification

Return Air Allowed

Positive Pressure

□ Negative Pressure

🗆 +/- 2% RH

Local FCU (Remote)

□ 30%-50% RH Settable

□ 30%-50% RH

Acoustic Control

NC-15	TEM / Recording
NC-20	SEM
NC-25	Dil Fridge
NC-30	High Perf Lab
NC-35	Conference
NC-40	Private Office
NC-45	Open Office
NC-50	Laboratory
No Rec	uirement

Air Quality

□ ISO 3 1 □ ISO 4 10 □ ISO 5 100 □ ISO 6 1,000 □ ISO 7 10,000 □ ISO 8 100,000 No Classification □ Laminar Flow □ Moveable T-stat

Electromagnetic Interference (EMI) Control

100 nT RMS (300 nTp-p): General High Performance Lab □ 35 nT RMS (100 nTp-p): **Dilution Refrigerator Lab** □ 18 nT RMS (50 nTp-p): E Beam / FIB □ 11 nT RMS (30 nTp-p): SEM / TEM FEI Titan / JEOL 2100F □ 4 nT RMS (10nTp-p):

Infrastructure

- Clean Dry Air
- □ House Vacuum
- □ House Nitrogen (gas)
- □ House Helium (gas)
- Cylinder Gas Manifolds Qty
- Helium Recovery (Vertical)
- Other
- □ 480V 3p Required

- □ Hot Water □ Cold Water RODI Evewash (Tempered Water) Safety Shower (Tempered Water) Other
 - Data (Fiber)
 - Data (Copper)

Temperature Control

Power Density

- 5 W/sf (2W/sf demand)
- □ 10 W/sf (5W/sf demand)
- 20 W/sf (10W/sf demand)
- 30 W/sf (15W/sf demand)
- 50 W/sf (25W/sf demand) □ 80 W/sf (40 W/sf demand)
- □ 100 W/sf (50W/sf demand)
- Pump Power
- - Instrument Power Clean Ground
 - Emergency Power

Architectural

- □ ESD Flooring
- □ Seamless Flooring
- Cryo Safe Flooring
- Chemical Resistant Flooring
- □ Wall Mounts
- Ceiling Mounts
- Double Door
- Windows Allowed
- □ Fume Hood
- □ Snorkel Exhaust
- Biological Safety Cabinet
- □ HEPA Filter
- □ ULPA Filter
- □ Process Chilled Water
- Percent of Power Demand
- 12V DC LED Lighting
- □ Standard LED Lighting

PUMP CLOSET

The pump closet supports many types of labs by providing segregated space for placement of noisy peripheral equipment.

PUMP CLOSET - (0.5) BAYS - 165 ASF

PUMP CLOSET - SECTIONS

Pump Closet Laboratory Type: Laboratory Function: Support Room Description of Activities: Vibration and acoustically isolated room for pumps and chillers and local FCU

Vibration Control

Temperature Control

Allowable Maximum Rate of Temperature Fluctuation

Acoustic Control	Air Quality	Humidity Control	Power Densit
 NC-15 TEM / Recording NC-20 SEM NC-25 Dil Fridge NC-30 High Perf Lab NC-35 Conference NC-40 Private Office NC-45 Open Office NC-50 Laboratory No Requirement 	 □ ISO 3 1 □ ISO 4 10 □ ISO 5 100 □ ISO 6 1,000 □ ISO 7 10,000 □ ISO 8 100,000 ■ No Classification □ Laminar Flow □ Moveable T-stat ■ Pump Exhaust 	 30%-50% RH 30%-50% RH Settable No Humidification Return Air Allowed Local FCU (Remote) Positive Pressure Negative Pressure +/- 2% RH 	□ 5 W/sf (2W/sf □ 10 W/sf (5W/sf □ 20 W/sf (10W □ 30 W/sf (15W □ 50 W/sf (25W □ 80 W/sf (40 V □ 100 W/sf (50) □ Pump Power □ Instrument Po □ Clean Ground

Electromagnetic Interference (EMI) Control

100 nT RMS (300 nTp-p): General High Performance Lab □ 35 nT RMS (100 nTp-p): **Dilution Refrigerator Lab** □ 18 nT RMS (50 nTp-p): E Beam / FIB □ 11 nT RMS (30 nTp-p): SEM / TEM □ 4 nT RMS (10nTp-p): FEI Titan / JEOL 2100F

Infrastructure

- Clean Dry Air □ House Vacuum House Nitrogen (gas) □ House Helium (gas) Cylinder Gas Manifolds Qty_2_ Helium Recovery (Vertical) Other Pump Exhaust 480V 3p Required
- - □ Hot Water
 - □ Cold Water
 - RODI
 - Eyewash (Tempered Water)
 - Safety Shower (Tempered Water)
 - Other
 - Data (Fiber)
 - Data (Copper)

- ty
- demand) sf demand)
- //sf demand)
- //sf demand)
- //sf demand)
- V/sf demand)
- W/sf demand)
- ower
- Emergency Power

Architectural

- □ ESD Flooring
- □ Seamless Flooring
- Cryo Safe Flooring
- Chemical Resistant Flooring
- Wall Mounts
- Ceiling Mounts
- Double Door
- Windows Allowed
- □ Fume Hood
- □ Snorkel Exhaust
- Biological Safety Cabinet
- HEPA Filter
- ULPA Filter
- Process Chilled Water 75% Percent of Power Demand
- 12V DC LED Lighting
- □ Standard LED Lighting

iii. METALORGANIC CHEMICAL VAPOR DEPOSITION (MOCVD)

MOCVD LAB

The MOCVD Lab supports materials growth of semiconductor devices such as LEDs, lasers, and transistors, as well as synthesis of novel materials structures including nanowires. The MOCVD systems are capable of growing GaN and related materials, classical III-V semiconductors including InP and GaAs, III-Vs on silicon, and semiconducting oxides. In addition to the MOCVD systems themselves, support equipment includes gas scrubbing units, system pumps, toxic gas cabinets, fume hoods for sample preparation, fume hoods for parts cleaning, wafer cleaving and preparation, and UV ozone treatment.

MOCVD SUITE OPTION 1 - (6) TOOLS - (13.2) BAYS - 4,686 ASF

MOCVD SUITE OPTION 2 - (8) TOOLS - (14) BAYS - 4,620 ASF

NOTE: MOCVD LABS SHOULD BE LOCATED ON THE GROUND FLOOR WITH EXTERIOR ACCESS. MOCVD LABS SHOULD BE LOCATED ADJACENT TO FLEXIBLE STUDENT SPACE THAT COULD BE CONVERTED TO ADDITIONAL MOCVD LAB EXPANSION SPACE IN THE FUTURE.

MOCVD LAB OPTION 1 - (2) TOOLS - (3.73) BAYS + GAS STORAGE - 1,232 ASF (3x)

MOCVD LAB OPTION 1 - SECTIONS

MOCVD LAB OPTION 2 - (4) TOOLS - (7) BAYS + GAS STORAGE - 2,310 ASF (2x)

Laboratory Type: MOCVD Lab Laboratory Function: Metal Organic Chemical Vapor Deposition Description of Activities: Materials Growth, Blue LEDs, Semiconductor Devices

Vibration Control

A	cousti	c Control	Ai	ir Qual	lity
	NC-15	TEM / Recording		ISO 3	1
	NC-20	SEM		ISO 4	10
	NC-25	Dil Fridge		ISO 5	100
	NC-30	High Perf Lab		ISO 6	1,000
	NC-35	Conference		ISO 7	10,000
	NC-40	Private Office		ISO 8	100,000
	NC-45	Open Office		No Clas	ssification
	NC-50	Laboratory		Lamina	r Flow
	No Rec	uirement		Moveat	ole T-stat

y 0 00 .000

Humidity Control

- **30%-50% RH** □ 30%-50% RH Settable □ No Humidification
- □ Return Air Allowed Local FCU (Remote)

Electromagnetic Interference (EMI) Control

100 nT RMS (300 nTp-p): General High Performance Lab □ 35 nT RMS (100 nTp-p): **Dilution Refrigerator Lab** □ 18 nT RMS (50 nTp-p): E Beam / FIB □ 11 nT RMS (30 nTp-p): SEM / TEM □ 4 nT RMS (10nTp-p): FEI Titan / JEOL 2100F

Infrastructure

_

Clean Dry Air 150 psi Hot Water Cold Water House Vacuum House Nitrogen (gas) boil off RODI Eyewash (Tempered Water) □ House Helium (gas) Cylinder Gas Manifolds Qty Safety Shower (Tempered Water) □ Helium Recovery (Vertical) Other □ Other Data (Fiber) 480V 3p Required Data (Copper) *floor drain *for one system **stainless steel piping from LN2 tank to tools

Power Density

Temperature Control

- Desitive Pressure
- Negative Pressure
- □ +/- 2% RH
- □ 5 W/sf (2W/sf demand) □ 10 W/sf (5W/sf demand) 20 W/sf (10W/sf demand) per system □ 30 W/sf (15W/sf demand)

*100kW typical.

- 170kW for one Veeco system
- 100 W/sf (50W/sf demand) □ Pump Power □ Instrument Power

50 W/sf (25W/sf demand)

□ 80 W/sf (40 W/sf demand)

- □ Clean Ground
- Emergency Power *UPS central 20kW for computer, chillers

Architectural

- ESD Flooring
- Seamless Flooring
- Cryo Safe Flooring
- Chemical Resistant Flooring
- □ Wall Mounts
- Ceiling Mounts
- Double Door
- Windows Allowed

*overhead coiling door

- □ Fume Hood
- □ Snorkel Exhaust
- Biological Safety Cabinet
- HEPA Filter
- ULPA Filter
- Process Chilled Water 25% Percent of Power Demand
- □ 12V DC LED Lighting
- Standard LED Lighting

*house chw needs cleanliness spec **dedicated chillers (neslab) for process

chw

GENERAL LAB (MOCVD)

The MOCVD General Labs include support space for MOCVD Clean Prep and Parts Cleaning. The General Labs include wet process hoods, mobile bench space, and nitrogen storage boxes. MOCVD Gowning is also considered a General Lab.

MOCVD CLEAN PREP - (2) BAYS - 660 ASF

MOCVD CLEAN PREP - SECTIONS

Laboratory Type:	Clean Prep
Laboratory Function:	Support Room
Description of Activities:	Clean Prep for MOCVD

Vibration Control

Temperature Control

Allowable Maximum Rate of Temperature Fluctuation

A	cousti	c Control	Α	ir Qua	lity
	NC-15	TEM / Recording		ISO 3	1
	NC-20	SEM		ISO 4	10
\Box	NC-25	Dil Fridge		ISO 5	100
\Box	NC-30	High Perf Lab		ISO 6	1,000
	NC-35	Conference		ISO 7	10,000
\Box	NC-40	Private Office		ISO 8	100,000
\Box	NC-45	Open Office		No Clas	ssification
	NC-50	Laboratory		Lamina	r Flow
	No Rec	uirement		Moveat	ole T-stat

ality 1 10 100

Humidity Control

30%-50% RH □ 30%-50% RH Settable □ No Humidification

Return Air Allowed

Local FCU (Remote)

Positive Pressure □ Negative Pressure

□ +/- 2% RH

Electromagnetic Interference (EMI) Control

□ 100 nT RMS (300 nTp-p): □ 35 nT RMS (100 nTp-p): □ 18 nT RMS (50 nTp-p): □ 11 nT RMS (30 nTp-p): □ 4 nT RMS (10nTp-p): *no requirement

General High Performance Lab **Dilution Refrigerator Lab** E Beam / FIB SEM / TEM FEI Titan / JEOL 2100F

Hot Water

Cold Water

Infrastructure

- Clean Dry Air
- House Vacuum
- House Nitrogen (gas) □ House Helium (gas)
- Cylinder Gas Manifolds Qty □ Helium Recovery (Vertical)
- □ Other
- □ 480V 3p Required
- RODI Eyewash (Tempered Water) Safety Shower (Tempered Water) □ Other Data (Fiber) Data (Copper) *floor drain

30 W/sf (15W/sf demand) 50 W/sf (25W/sf demand) □ 80 W/sf (40 W/sf demand)

□ 100 W/sf (50W/sf demand)

□ 5 W/sf (2W/sf demand)

□ 10 W/sf (5W/sf demand)

□ 20 W/sf (10W/sf demand)

Pump Power

Power Density

- Instrument Power
- Clean Ground Emergency Power

Architectural

- ESD Flooring
- □ Seamless Flooring
- Cryo Safe Flooring
- Chemical Resistant Flooring
- □ Wall Mounts
- Ceiling Mounts
- Double Door
- Windows Allowed
- Fume Hood
- □ Snorkel Exhaust
- Biological Safety Cabinet
- HEPA Filter
- ULPA Filter
- □ Process Chilled Water
- Percent of Power Demand □ 12V DC LED Lighting
- Standard LED Lighting

MOCVD PARTS CLEAN - (1) BAY - 330 ASF

MOCVD PARTS CLEAN - SECTIONS

Parts Clean Laboratory Type: Support Room Laboratory Function: Description of Activities: Parts Cleaning, Dirty Prep for MOCVD

Vibration Control

Electromagnetic Interference (EMI) Control

Acoustic Control

NC-15	TEM / Recording
NC-20	SEM
NC-25	Dil Fridge
NC-30	High Perf Lab
NC-35	Conference
NC-40	Private Office
NC-45	Open Office
NC-50	Laboratory
No Rec	luirement

□ 100 nT RMS (300 nTp-p):

□ 35 nT RMS (100 nTp-p):

□ 18 nT RMS (50 nTp-p):

□ 11 nT RMS (30 nTp-p):

□ 4 nT RMS (10nTp-p):

*no requirement

Infrastructure

Clean Dry Air

□ Other

House Vacuum

□ House Helium (gas)

□ 480V 3p Required

House Nitrogen (gas)

Cylinder Gas Manifolds Qty

□ Helium Recovery (Vertical)

Air Quality

General High Performance Lab

Dilution Refrigerator Lab

FEI Titan / JEOL 2100F

E Beam / FIB

SEM / TEM

Humidity Control 30%-50% RH □ 30%-50% RH Settable □ No Humidification

N/A

Set Point 68-72°F

Temperature Control

+10°F / -2°F +/- 2°F

Allowable Temperature Range off Set Point

+1°F / hr

Allowable Maximum Rate of Temperature Fluctuation

- □ Return Air Allowed
- Local FCU (Remote)
- □ Positive Pressure Negative Pressure
- □ +/- 2% RH

Power Density

1°F / hr

□ 5 W/sf (2W/sf demand) □ 10 W/sf (5W/sf demand) 20 W/sf (10W/sf demand) □ 30 W/sf (15W/sf demand) 50 W/sf (25W/sf demand) □ 80 W/sf (40 W/sf demand) □ 100 W/sf (50W/sf demand) Pump Power Instrument Power □ Clean Ground Emergency Power Architectural ESD Flooring Seamless Flooring Cryo Safe Flooring Chemical Resistant Flooring

+/- 0.1°F

0.05°F / hr

+/- 1°F

0.1°F / hr

- □ Wall Mounts
- Ceiling Mounts Double Door
- Windows Allowed
- Fume Hood Snorkel Exhaust Biological Safety Cabinet □ HEPA Filter ULPA Filter □ Process Chilled Water Percent of Power Demand
- 12V DC LED Lighting
- Standard LED Lighting

Hot Water *both lab and potable Cold Water RODI Eyewash (Tempered Water) Safety Shower (Tempered Water) Other Data (Fiber)

Data (Copper)

MOCVD GOWNING - (0.5) BAYS - 165 ASF

PUMP CLOSET

The pump closet supports many types of labs by providing segregated space for placement of noisy peripheral equipment.

PUMP CLOSET - (1) BAY - 330 ASF

PUMP CLOSET - SECTIONS

Pump Closet Laboratory Type: Laboratory Function: Support Room Description of Activities: Vibration and acoustically isolated room for pumps and chillers and local FCU

Vibration Control

Temperature Control

Allowable Maximum Rate of Temperature Fluctuation

Acoustic	Air Qual	lity	
□ NC-15	TEM / Recording	ISO 3	1
NC-20	SEM	🗆 ISO 4	10
NC-25	Dil Fridge	🗆 ISO 5	100
NC-30	High Perf Lab	ISO 6	1.0
NC-35	Conference	ISO 7	10.0
NC-40	Private Office	ISO 8	100
NC-45	Open Office	No Class	ssific
NC-50	Laboratory	Lamina	r Flo
No Req	uirement		nle T

Electromagnetic Interference (EMI) Control

100 nT RMS (300 nTp-p):

□ 35 nT RMS (100 nTp-p):

□ 18 nT RMS (50 nTp-p):

□ 11 nT RMS (30 nTp-p):

□ 4 nT RMS (10nTp-p):

Infrastructure

Clean Dry Air

□ House Vacuum

House Nitrogen (gas)

Other <u>Pump Exhaust</u>

Cylinder Gas Manifolds Qty_2_

Helium Recovery (Vertical)

□ House Helium (gas)

480V 3p Required

٦ 00 000 0.000 cation сw T-stat Pump Exhaust

General High Performance Lab

Dilution Refrigerator Lab

FEI Titan / JEOL 2100F

☐ Hot Water

RODI

Other

Cold Water

Data (Fiber)

Data (Copper)

Evewash (Tempered Water)

Safety Shower (Tempered Water)

E Beam / FIB

SEM / TEM

Power Density Humidity Control

- □ 30%-50% RH
- □ +/- 2% RH
- Clean Ground
 - Emergency Power

□ Instrument Power

□ 5 W/sf (2W/sf demand) □ 10 W/sf (5W/sf demand)

□ 20 W/sf (10W/sf demand)

□ 30 W/sf (15W/sf demand)

50 W/sf (25W/sf demand)

□ 80 W/sf (40 W/sf demand)

100 W/sf (50W/sf demand)

Architectural

Pump Power

- □ ESD Flooring
- □ Seamless Flooring
- Cryo Safe Flooring
- Chemical Resistant Flooring
- Wall Mounts
- Ceiling Mounts
- Double Door
- Windows Allowed
- □ Fume Hood
- □ Snorkel Exhaust
- Biological Safety Cabinet
- HEPA Filter
- ULPA Filter
- Process Chilled Water 75% Percent of Power Demand 12V DC LED Lighting
- Standard LED Lighting

Life. Science. Architecture, Inc.

iv. MOLECULAR BEAM EPITAXY (MBE)

MBE LAB

Electronic and optical materials are at the core of many emerging technologies in the areas of high-speed electronic devices, optical computing, lasers, optical data storage and semiconductor lighting. Because of their superior electronic and optoelectronic properties, GaAs, GaN, InP, GaSb, specialized III-V materials and oxide-based semiconductors are of interest. These materials are grown by advanced molecular beam epitaxy (MBE) approaches.

MBE SUITE OPTION 1 - (10) TOOLS - (14) BAYS - 4,620 ASF

MBE SUITE OPTION 2 - (10) TOOLS - (12) BAYS - 3,960 ASF

NOTE: MBE LABS SHOULD BE LOCATED ON THE GROUND FLOOR WITH EXTERIOR ACCESS.

MBE LAB OPTION 1 - (2) TOOLS - (2) BAYS - 660 ASF **(5x)**

- (10) TOTAL TOOLS:
 - 1. Veeco GENII GaAs
 - 2. Veeco GENIII GaAs
 - 3. Veeco GEN930 GaN
 - 4. Veeco GENII GaN
 - 5. Veeco GENII Cd3As2
 - 6. Veeco GEN930 Oxide
 - 7. Veeco 620 Ga2O3
 - 8. Veeco GEN930 Oxide
 - 9. Riber Compact 21
 - 10. Future Hire

MBE LAB OPTION 1 - (2) TOOLS - (2) BAYS - 660 ASF + PUMP CLOSET (5x)

(10) TOTAL TOOLS:

- 1. Veeco GENII GaAs
- 2. Veeco GENIII GaAs
- 3. Veeco GEN930 GaN
- 4. Veeco GENII GaN
- 5. Veeco GENII -Cd3As2
- 6. Veeco GEN930 Oxide
- 7. Veeco 620 Ga2O3
- 8. Veeco GEN930 Oxide
- 9. Riber Compact 21
- 10. Future Hire

MBE LAB OPTION 1 - SECTIONS

MBE LAB OPTION 2 - (5) TOOLS - (6) BAYS - 1,980 ASF + PUMP CLOSET (2x)

(10) TOTAL TOOLS:

- 1. Veeco GENII GaAs
- 2. Veeco GENIII GaAs
- 3. Veeco GEN930 GaN
- 4. Veeco GENII GaN
- 5. Veeco GENII -Cd3As2
- 6. Veeco GEN930 Oxide
- 7. Veeco 620 Ga2O3
- 8. Veeco GEN930 Oxide
- 9. Riber Compact 21
- 10. Future Hire

MBE LAB OPTION 2 - SECTIONS

Laboratory Type: MBE Lab Laboratory Function: Materials Growth Description of Activities: Molecular Beam Epitaxy, Oxides, Nitrides, Arsenides, Spintronics, Metals

Vibration Control

Temperature Control

Acoustic Control

NC-15 TEM / Recording □ NC-20 SEM □ NC-25 Dil Fridge □ NC-30 High Perf Lab □ NC-35 Conference □ NC-40 Private Office □ NC-45 Open Office NC-50 Laboratory □ No Requirement

Air Quality

□ ISO 3 1 □ ISO 4 10 □ ISO 5 100 □ ISO 6 1,000 □ ISO 7 10,000 □ ISO 8 100,000 No Classification □ Laminar Flow □ Moveable T-stat

Electromagnetic Interference (EMI) Control

□ 100 nT RMS (300 nTp-p): □ 35 nT RMS (100 nTp-p): 18 nT RMS (50 nTp-p):

- □ 11 nT RMS (30 nTp-p):
- □ 4 nT RMS (10nTp-p):

General High Performance Lab **Dilution Refrigerator Lab** E Beam / FIB SEM / TEM FEI Titan / JEOL 2100F

Infrastructure

- Clean Dry Air House Vacuum
- House Nitrogen (gas)
- □ House Helium (gas)
- Cylinder Gas Manifolds Qty
- □ Helium Recovery (Vertical)
- □ Other
- □ 480V 3p Required
- *LN2

- - □ Hot Water
 - □ Cold Water
 - □ RODI
 - Evewash (Tempered Water)
 - Safety Shower (Tempered Water)
 - □ Other
 - Data (Fiber)
 - Data (Copper)
 - *No Sink

Power Density Humidity Control

- □ 30%-50% RH □ 30%-50% RH Settable No Humidification
- Return Air Allowed
- Local FCU (Remote) Desitive Pressure
- Negative Pressure
- □ +/- 2% RH
 - Instrument Power

Clean Ground Emergency Power *UPS

5 W/sf (2W/sf demand)

□ 10 W/sf (5W/sf demand)

20 W/sf (10W/sf demand)

□ 30 W/sf (15W/sf demand)

50 W/sf (25W/sf demand)

□ 80 W/sf (40 W/sf demand)

100 W/sf (50W/sf demand)

Architectural

Pump Power

- □ ESD Flooring
- Seamless Flooring
- Cryo Safe Flooring
- Chemical Resistant Flooring
- Wall Mounts
- Ceiling Mounts
- Double Door
- Windows Allowed

*overhead coiling door

- Fume Hood (3) 8ft Process Hoods
- Snorkel Exhaust
- **Biological Safety Cabinet**
- **HEPA Filter**
- ULPA Filter
- Process Chilled Water
- 50-70 Percent of Power Demand
- 12V DC LED Lighting □ Standard LED Lighting

GENERAL LAB (MBE)

The MBE General Lab is a shared support facility for MBE Maintenance, Electrical, and Prep. The General Lab includes a chemical fume hood and mobile bench space. MBE Gowning is also considered a General Lab.

GENERAL LAB (MBE) - (1) BAY - 330 ASF

MBE GOWNING - (0.5) BAY - 165 ASF

GENERAL LAB (MBE) - SECTION

78

22 May 2017

General Lab (MBE) Laboratory Type: Laboratory Function: Support Room Description of Activities: Maintenance, Electrical Shop, Prep, Clean De-Gowning

Vibration Control

Temperature Control

Acoustic Control

NC-15	TEM / Recording
NC-20	SEM
NC-25	Dil Fridge
NC-30	High Perf Lab
NC-35	Conference
NC-40	Private Office
NC-45	Open Office
NC-50	Laboratory
No Rec	luirement

Air Quality □ ISO 3 1 □ ISO 4 10 □ ISO 5 100 □ ISO 6 1,000 □ ISO 7 10,000

□ ISO 8 100,000

No Classification □ Laminar Flow

Humidity Control

- □ Positive Pressure
- Negative Pressure □ +/- 2% RH

□ Moveable T-stat *HEPA filters at Clean

De-Gowning

Electromagnetic Interference (EMI) Control

100 nT RMS (300 nTp-p):	General High Performance Lab
35 nT RMS (100 nTp-p):	Dilution Refrigerator Lab
18 nT RMS (50 nTp-p):	E Beam / FIB
11 nT RMS (30 nTp-p):	SEM / TEM
4 nT RMS (10nTp-p):	FEI Titan / JEOL 2100F

Infrastructure

Life. Science. Architecture, Inc.

Clean Dry Air House Vacuum House Nitrogen (gas) House Helium (gas) Cylinder Gas Manifolds Qty_2 Helium Recovery (Vertical) Other	Hot Water Cold Water RODI Eyewash (Te Safety Show Other Data (Fiber)
Helium Recovery (Vertical) Other 480V 3p Required	Other Data (Fiber) Data (Coppe

Hot Water	
Cold Water	
RODI	
Eyewash (Tempered Water)	
Safety Shower (Tempered Water)	
Other	
Data (Fiber)	
Data (Copper)	

Power Density

 5 W/sf (2W/sf demand) 10 W/sf (5W/sf demand) 20 W/sf (10W/sf demand) 30 W/sf (15W/sf demand) 50 W/sf (25W/sf demand) 80 W/sf (40 W/sf demand) 100 W/sf (50W/sf demand) Pump Power Instrument Power Clean Ground Emergency Power
Architectural
 ESD Flooring Seamless Flooring Cryo Safe Flooring Chemical Resistant Flooring Wall Mounts Ceiling Mounts Double Door Windows Allowed
 Fume Hood Snorkel Exhaust Biological Safety Cabinet HEPA Filter ULPA Filter Process Chilled Water 25 Percent of Power Demand 12V DC LED Lighting Standard LED Lighting

PUMP CLOSET

The pump closet supports many types of labs by providing segregated space for placement of noisy peripheral equipment.

PUMP CLOSET - (1) BAY - 330 ASF

PUMP CLOSET - SECTIONS

Pump Closet Laboratory Type: Laboratory Function: Support Room Description of Activities: Vibration and acoustically isolated room for pumps and chillers and local FCU

Vibration Control

Temperature Control

Allowable Maximum Rate of Temperature Fluctuation

Acoustic Control	Air Quality	Humidity Control	Power Density
 NC-15 TEM / Recording NC-20 SEM NC-25 Dil Fridge NC-30 High Perf Lab NC-35 Conference NC-40 Private Office NC-45 Open Office NC-50 Laboratory No Requirement 	 □ ISO 3 1 □ ISO 4 10 □ ISO 5 100 □ ISO 6 1,000 □ ISO 7 10,000 □ ISO 8 100,000 ■ No Classification □ Laminar Flow □ Moveable T-stat ■ Pump Exhaust 	 30%-50% RH 30%-50% RH Settable No Humidification Return Air Allowed Local FCU (Remote) Positive Pressure Negative Pressure +/- 2% RH 	 □ 5 W/sf (2W/sf d □ 10 W/sf (5W/sf □ 20 W/sf (10W/s □ 30 W/sf (15W/s □ 50 W/sf (25W/s □ 80 W/sf (40 W/s □ 100 W/sf (50W/ □ Pump Power □ Instrument Pow □ Clean Ground

Electromagnetic Interference (EMI) Control

100 nT RMS (300 nTp-p): General High Performance Lab □ 35 nT RMS (100 nTp-p): **Dilution Refrigerator Lab** □ 18 nT RMS (50 nTp-p): E Beam / FIB □ 11 nT RMS (30 nTp-p): SEM / TEM □ 4 nT RMS (10nTp-p): FEI Titan / JEOL 2100F

Infrastructure

- Clean Dry Air □ House Vacuum House Nitrogen (gas) □ House Helium (gas) Cylinder Gas Manifolds Qty_2_ Helium Recovery (Vertical) Other Pump Exhaust 480V 3p Required
- - □ Hot Water
 - □ Cold Water
 - RODI
 - Eyewash (Tempered Water)
 - Safety Shower (Tempered Water)
 - Other
 - Data (Fiber)
 - Data (Copper)

- f demand)
- sf demand)
- //sf demand) //sf demand)
- //sf demand)
- V/sf demand)
- W/sf demand)
- ower
- d Emergency Power
- Architectural
- □ ESD Flooring
- □ Seamless Flooring
- Cryo Safe Flooring
- Chemical Resistant Flooring Wall Mounts
- Ceiling Mounts
- Double Door
- Windows Allowed
- □ Fume Hood
- □ Snorkel Exhaust
- Biological Safety Cabinet
- HEPA Filter
- ULPA Filter
- Process Chilled Water 75% Percent of Power Demand
- 12V DC LED Lighting
- □ Standard LED Lighting

v. INORGANIC, SOFT, MACROMOLECULAR MATERIALS

WET SYNTHESIS LAB

The wet synthesis lab supports work on synthesis of macromolecular and bimolecular materials and on processing soft materials to study their self-assembly, intermolecular and interfacial interactions, and electronic properties. These experiments require fume hoods for safe synthesis of materials and storage space for solvents, chemical reagents, and chemical waste. Vacuum pumps and gas cylinders are required for synthetic reactions, solvent purification systems, and other small equipment. In some variations of the lab design, a controlled atmosphere glove box will be included also requiring gases and vacuum equipment. Bench space is required for preparatory work on samples, solvent purification systems, and documentation of research by lab workers. Snorkel-type exhaust is provided for table-top equipment requiring local exhaust. Cabinet space is required for storage of reagents and basic scientific apparatus and glassware. A door to an adjacent characterization laboratory allows access for analysis of materials synthesized in the laboratory.

WET SYNTHESIS LAB - (2) BAYS - 660 ASF

WET SYNTHESIS LAB - SECTIONS

Wet Synthesis Lab Laboratory Type: Soft Materials, Inorganic Materials, Biomolecular & Macromolecular Laboratory Function: Description of Activities: Wet Synthesis

Vibration Control

Temperature Control

Acoustic Control

NC-15 TEM / Recording □ NC-20 SEM □ NC-25 Dil Fridge □ NC-30 High Perf Lab □ NC-35 Conference □ NC-40 Private Office □ NC-45 Open Office NC-50 Laboratory □ No Requirement

Air Quality

□ ISO 3 1 □ ISO 4 10 □ ISO 5 100 □ ISO 6 1,000 □ ISO 7 10,000 □ ISO 8 100,000 No Classification □ Laminar Flow □ Moveable T-stat

Electromagnetic Interference (EMI) Control

100 nT RMS (300 nTp-p): □ 35 nT RMS (100 nTp-p): □ 18 nT RMS (50 nTp-p): □ 11 nT RMS (30 nTp-p): □ 4 nT RMS (10nTp-p):

General High Performance Lab **Dilution Refrigerator Lab** E Beam / FIB SEM / TEM FEI Titan / JEOL 2100F

Infrastructure

- Clean Dry Air
- House Vacuum
- House Nitrogen (gas)
- □ House Helium (gas)
- Cylinder Gas Manifolds Qty 6
- ☐ Helium Recovery (Vertical)
- □ Other
- □ 480V 3p Required

- Hot Water Cold Water
- RODI
- Evewash (Tempered Water)
 - Safety Shower (Tempered Water)
- □ Other
- Data (Fiber)
- Data (Copper) *floor drain

Humidity Control

30%-50% RH □ 30%-50% RH Settable □ No Humidification

Return Air Allowed

Local FCU (Remote) Desitive Pressure

Negative Pressure

□ +/- 2% RH

Pump Power Instrument Power Clean Ground

Power Density

5 W/sf (2W/sf demand)

□ 10 W/sf (5W/sf demand)

20 W/sf (10W/sf demand)

30 W/sf (15W/sf demand)

50 W/sf (25W/sf demand)

□ 80 W/sf (40 W/sf demand)

□ 100 W/sf (50W/sf demand)

- Emergency Power
- Architectural
- □ ESD Flooring
- Seamless Flooring
- Cryo Safe Flooring
- Chemical Resistant Flooring
- □ Wall Mounts
- Ceiling Mounts
- Double Door
- Windows Allowed

Fume Hood*(4) 8ft hoods + (1) walk-in

- Snorkel Exhaust
- Biological Safety Cabinet
- □ HEPA Filter
- ULPA Filter
- □ Process Chilled Water
- Percent of Power Demand
- □ 12V DC LED Lighting Standard LED Lighting

HIGH TEMPERATURE SYNTHESIS LAB

Synthesis of novel inorganic materials often requires high temperature reactions spanning from solid state reactions to melt-driven crystal growth. The development of frontier materials spanning from complex oxides to functional intermetallics requires the reaction of a variety of chemical precursors in controlled gas environments, and this is accomplished inside an array of tailored furnaces. These furnaces are driven via resistive heating elements which draw a high power load, and chemical volatility during the reaction requires substantial exhaust infrastructure. As a result, an expansive exhaust infrastructure and high power density is required for this laboratory.

HIGH TEMPERATURE SYNTHESIS LAB - (2) BAYS - 660 ASF

HIGH TEMPERATURE SYNTHESIS LAB - SECTIONS

High Temperature Synthesis Lab Laboratory Type: Soft Materials, Inorganic Materials, Biomolecular & Macromolecular Laboratory Function: Description of Activities: High-Temperature Solid State Synthesis

Vibration Control

Acoustic Control

NC-15	TEM / Recording
NC-20	SEM
NC-25	Dil Fridge
NC-30	High Perf Lab
NC-35	Conference
NC-40	Private Office
NC-45	Open Office
NC-50	Laboratory
No Rec	uirement

Air Quality

□ ISO 3 1 □ ISO 4 10 □ ISO 5 100 □ ISO 6 1,000 □ ISO 7 10,000 □ ISO 8 100,000 No Classification □ Laminar Flow □ Moveable T-stat

Electromagnetic Interference (EMI) Control

100 nT RMS (300 nTp-p): □ 35 nT RMS (100 nTp-p): □ 18 nT RMS (50 nTp-p): □ 11 nT RMS (30 nTp-p): □ 4 nT RMS (10nTp-p):

General High Performance Lab **Dilution Refrigerator Lab** E Beam / FIB SEM / TEM FEI Titan / JEOL 2100F

Infrastructure

- Clean Dry Air
- House Vacuum
- House Nitrogen (gas)
- □ House Helium (gas)
- Cylinder Gas Manifolds Qty 6
- ☐ Helium Recovery (Vertical)
- □ Other
- □ 480V 3p Required

Hot Water Cold Water RODI Evewash (Tempered Water) Safety Shower (Tempered Water) □ Other Data (Fiber) Data (Copper) *floor drain

Humidity Control

30%-50% RH □ 30%-50% RH Settable □ No Humidification

Return Air Allowed Local FCU (Remote)

Desitive Pressure

Negative Pressure

□ +/- 2% RH

Pump Power Instrument Power

Power Density

5 W/sf (2W/sf demand)

□ 10 W/sf (5W/sf demand)

20 W/sf (10W/sf demand)

30 W/sf (15W/sf demand)

50 W/sf (25W/sf demand)

□ 80 W/sf (40 W/sf demand)

100 W/sf (50W/sf demand) *300W/sf furnaces

- Clean Ground Emergency Power
- Architectural
- □ ESD Flooring
- □ Seamless Flooring
- Cryo Safe Flooring
- Chemical Resistant Flooring
- □ Wall Mounts
- Ceiling Mounts
- Double Door
- Windows Allowed

Fume Hood*(4) 8ft hoods + (1) walk-in

- Snorkel Exhaust
- Biological Safety Cabinet
- □ HEPA Filter
- ULPA Filter
- □ Process Chilled Water
- Percent of Power Demand
- □ 12V DC LED Lighting
- Standard LED Lighting

CHARACTERIZATION LAB

The detailed characterization of materials mandates a broad complement of techniques probing both their structural and electronic properties. Measurements spanning from detailed electrical transport, electrochemical properties, optical and infrared spectroscopy, and various thermodynamics properties require a versatile lab capable of supporting high precision instrumentation. As a result, this lab requires modest exhaust relative to the synthesis laboratories to support glovebox-based device preparation as well as the infrastructure required to power optical spectrometers and associated light sources, atomic force microscopes, He-gas closed cycle refrigerators, and high precision current and voltage sources.

CHARACTERIZATION LAB - (1) BAY - 330 ASF

CHARACTERIZATION LAB - SECTIONS

Characterization Lab Laboratory Type: Soft Materials, Inorganic Materials, Biomolecular & Macromolecular Laboratory Function: Description of Activities: Low Temperature Characterization, Optical Spectrometry, Thermographic Analysis

Humidity Control

□ No Humidification

Return Air Allowed

Positive Pressure

□ Negative Pressure

□ +/- 2% RH

Local FCU (Remote)

□ 30%-50% RH Settable

30%-50% RH

Vibration Control

Acoustic Control

NC-15 TEM / Recording □ NC-20 SEM □ NC-25 Dil Fridge □ NC-30 High Perf Lab NC-35 Conference □ NC-40 Private Office □ NC-45 Open Office □ NC-50 Laboratory □ No Requirement

Air Quality

□ ISO 3 1 □ ISO 4 10 □ ISO 5 100 □ ISO 6 1,000 □ ISO 7 10,000 □ ISO 8 100,000 No Classification □ Laminar Flow □ Moveable T-stat

Electromagnetic Interference (EMI) Control

100 nT RMS (300 nTp-p): General High Performance Lab **Dilution Refrigerator Lab** □ 35 nT RMS (100 nTp-p): E Beam / FIB □ 18 nT RMS (50 nTp-p): □ 11 nT RMS (30 nTp-p): SEM / TEM FEI Titan / JEOL 2100F □ 4 nT RMS (10nTp-p):

Infrastructure

Clean Drv Air House Vacuum House Nitrogen (gas) □ House Helium (gas) Cylinder Gas Manifolds Qty □ Helium Recovery (Vertical) □ Other □ 480V 3p Required *water line, milliQ, cup sink

- □ Hot Water Cold Water RODI Evewash (Tempered Water)
 - Safety Shower (Tempered Water)
 - □ Other
 - Data (Fiber)
 - Data (Copper)

Temperature Control

Power Density

- 5 W/sf (2W/sf demand)
- □ 10 W/sf (5W/sf demand)
- 20 W/sf (10W/sf demand) □ 30 W/sf (15W/sf demand)
- 50 W/sf (25W/sf demand)
- □ 80 W/sf (40 W/sf demand)
- □ 100 W/sf (50W/sf demand)
- Pump Power
- Instrument Power
- Clean Ground
- Emergency Power

Architectural

- ESD Flooring
- □ Seamless Flooring
- Cryo Safe Flooring
- Chemical Resistant Flooring
- □ Wall Mounts
- Ceiling Mounts
- Double Door
- Windows Allowed
- □ Fume Hood
- Snorkel Exhaust
- Biological Safety Cabinet
- □ HEPA Filter
- ULPA Filter
- □ Process Chilled Water
- Percent of Power Demand
- □ 12V DC LED Lighting Standard LED Lighting

PUMP CLOSET

The pump closet supports many types of labs by providing segregated space for placement of noisy peripheral equipment.

PUMP CLOSET - (1) BAY - 330 ASF

PUMP CLOSET - SECTIONS

Pump Closet Laboratory Type: Laboratory Function: Support Room Description of Activities: Vibration and acoustically isolated room for pumps and chillers and local FCU

Vibration Control

Temperature Control

Acoustic Control	Air Quality	Humidity Control
 NC-15 TEM / Recording NC-20 SEM NC-25 Dil Fridge NC-30 High Perf Lab 	□ ISO 3 1 □ ISO 4 10 □ ISO 5 100 □ ISO 6 1 000	 ☐ 30%-50% RH ☐ 30%-50% RH Settable ■ No Humidification
 NC-35 Conference NC-40 Private Office NC-45 Open Office NC-50 Laboratory No Requirement 	 □ ISO 7 10,000 □ ISO 8 100,000 ■ No Classification □ Laminar Flow □ Moveable T-stat ■ Pump Exhaust 	 Return Air Allowed Local FCU (Remote) Positive Pressure Negative Pressure +/- 2% RH

Electromagnetic Interference (EMI) Control

100 nT RMS (300 nTp-p): General High Performance Lab □ 35 nT RMS (100 nTp-p): **Dilution Refrigerator Lab** □ 18 nT RMS (50 nTp-p): E Beam / FIB □ 11 nT RMS (30 nTp-p): SEM / TEM □ 4 nT RMS (10nTp-p): FEI Titan / JEOL 2100F

Infrastructure

- Clean Dry Air □ House Vacuum House Nitrogen (gas) □ House Helium (gas) Cylinder Gas Manifolds Qty_2_ Helium Recovery (Vertical) Other <u>Pump Exhaust</u> 480V 3p Required
- - ☐ Hot Water
 - Cold Water
 - RODI
 - Evewash (Tempered Water)
 - Safety Shower (Tempered Water)
 - Other
 - Data (Fiber)
 - Data (Copper)

- **Power Density**
- 5 W/sf (2W/sf demand)
- □ 10 W/sf (5W/sf demand) □ 20 W/sf (10W/sf demand)
- □ 30 W/sf (15W/sf demand)
- 50 W/sf (25W/sf demand)
- □ 80 W/sf (40 W/sf demand)
- 100 W/sf (50W/sf demand)
- Pump Power
- □ Instrument Power
- ☐ Clean Ground Emergency Power
- Architectural
- □ ESD Flooring
- □ Seamless Flooring
- Cryo Safe Flooring
- Chemical Resistant Flooring
- Wall Mounts
- Ceiling Mounts
- Double Door
- Windows Allowed
- □ Fume Hood
- □ Snorkel Exhaust
- Biological Safety Cabinet
- HEPA Filter
- ULPA Filter
- Process Chilled Water 75% Percent of Power Demand
- 12V DC LED Lighting
- Standard LED Lighting

vi. ELECTRONICS & PHOTONICS (ECE)

LASER LAB (ECE)

The ECE Laser Lab supports multi-disciplinary research activities in a broad range of Electronics and Photonics, Nanophotonics, Integrated Circuits and Infrared Spectroscopy. The Laser Lab is intended to support electronic and photonic device assembly and characterization, electronic and photonic integrated circuit test and measurement, and electronic and photonic packaging facilities. A typical laboratory would utilize floating optical tables and work benches, along with overhead shelving to house probe stations, fiber optic components, and high-speed test equipment for performing measurements and could be repartitioned to support dark room measurements.

LASER LAB (ECE) - (2) BAYS - 660 ASF

LASER LAB (ECE) - (3) BAYS - 990 ASF

LASER LAB (ECE) - SECTIONS

Laser Lab (ECE) Laboratory Type: Advanced Laser Optics Laboratory Function: Description of Activities: Electronics & Photonics, Nanophotonics, Integrated Circuits, IR Spectrosopy

Vibration Control

Temperature Control

Humidity Control

□ No Humidification

Return Air Allowed

Positive Pressure

□ Negative Pressure

□ +/- 2% RH

Local FCU (Remote)

□ 30%-50% RH Settable

30%-50% RH

Acoustic Control NC-15 TEM / Recording □ NC-20 SEM □ NC-25 Dil Fridge NC-30 High Perf Lab □ NC-35 Conference □ NC-40 Private Office □ NC-45 Open Office

□ NC-50 Laboratory

□ No Requirement

Air Quality

□ ISO 3 1 □ ISO 4 10 □ ISO 5 100 □ ISO 6 1,000 □ ISO 7 10,000 □ ISO 8 100,000 No Classification □ Laminar Flow Moveable T-stat *Low Velocity, Fabric Duct

Electromagnetic Interference (EMI) Control

□ 100 nT RMS (300 nTp-p): General High Performance Lab □ 35 nT RMS (100 nTp-p): **Dilution Refrigerator Lab** E Beam / FIB 18 nT RMS (50 nTp-p): □ 11 nT RMS (30 nTp-p): SEM / TEM □ 4 nT RMS (10nTp-p): FEI Titan / JEOL 2100F

Infrastructure

Clean Dry Air House Vacuum House Nitrogen (gas) □ House Helium (gas) Cylinder Gas Manifolds Qty 2 Helium Recovery (Vertical) □ Other

Hot Water Cold Water RODI Eyewash (Tempered Water) Safety Shower (Tempered Water) Other Laser in use light Data (Fiber) Data (Copper)

Power Density

- □ 5 W/sf (2W/sf demand)
- □ 10 W/sf (5W/sf demand) □ 20 W/sf (10W/sf demand)
- □ 30 W/sf (15W/sf demand)
- □ 50 W/sf (25W/sf demand)
- 80 W/sf (40 W/sf demand)
- □ 100 W/sf (50W/sf demand)
- Pump Power
- Instrument Power
- Clean Ground
- Emergency Power *UPS

Architectural

- ESD Flooring *Concrete Flooring
- □ Seamless Flooring
- Cryo Safe Flooring
- Chemical Resistant Flooring
- Wall Mounts
- Ceiling Mounts
- Double Door
- Windows Allowed *Blackout Shades
- □ Fume Hood
- Snorkel Exhaust
- Biological Safety Cabinet
- HEPA Filter
- ULPA Filter
- Process Chilled Water 25% Percent of Power Demand
- □ 12V DC LED Lighting
- Standard LED Lighting

GENERAL LAB (ECE)

The ECE General Lab is shared by multiple research groups for sample preparation, polishing, parts cleaning and other functions. Dedicated chemical fume hoods are provided for each group, with 3 foot depth to accommodate polishing equipment.

GENERAL LAB (ECE) - (1) BAY - 330 ASF

GENERAL LAB (ECE) - SECTIONS

Laboratory Performance Criteria

Laboratory Type: General Lab (ECE) Laboratory Function: Support Lab Description of Activities: Sample Prep, Polishing, Parts Cleaning

Vibration Control

Electromagnetic Interference (EMI) Control

Acoustic Control

NC 15	TEM / Popording
100-15	TENT Recording
NC-20	SEM
NC-25	Dil Fridge
NC-30	High Perf Lab
NC-35	Conference
NC-40	Private Office
NC-45	Open Office
NC-50	Laboratory
No Rec	uirement

Humidity Control

N/A

□ 30%-50% RH
 □ 30%-50% RH Settable
 ■ No Humidification

Set Point 68-72°F

Temperature Control

+10°F / -2°F +/- 2°F

Allowable Temperature Range off Set Point

+1°F / hr

Allowable Maximum Rate of Temperature Fluctuation

- Return Air Allowed
- Local FCU (Remote)
- Positive Pressure
- Negative Pressure
- □ +/- 2% RH

Power Density

1°F / hi

5 W/sf (2W/sf demand)

+/- 1°F

0.1°F / hr

+/- 0.1°F

0.05°F / hr

- 10 W/sf (5W/sf demand)
- 20 W/sf (10W/sf demand)
- □ 30 W/sf (15W/sf demand)
- □ 50 W/sf (25W/sf demand) □ 80 W/sf (40 W/sf demand)
- \square 100 W/sf (50W/sf demand)
- □ Pump Power
- □ Instrument Power
- □ Clean Ground
- Emergency Power

Architectural

□ 100 nT RMS (300 nTp-p): General High Performance Lab ESD Flooring □ 35 nT RMS (100 nTp-p): **Dilution Refrigerator Lab** Seamless Flooring □ 18 nT RMS (50 nTp-p): E Beam / FIB Cryo Safe Flooring □ 11 nT RMS (30 nTp-p): SEM / TEM Chemical Resistant Flooring □ 4 nT RMS (10nTp-p): FEI Titan / JEOL 2100F □ Wall Mounts Ceiling Mounts Double Door Windows Allowed Infrastructure Clean Dry Air Hot Water Fume Hood (3) 6ft Hoods - 3ft Depth House Vacuum Cold Water Snorkel Exhaust House Nitrogen (gas) Biological Safety Cabinet RODI Eyewash (Tempered Water) □ HEPA Filter □ House Helium (gas) Cylinder Gas Manifolds Qty 2 Safety Shower (Tempered Water) ULPA Filter □ Helium Recovery (Vertical) Other □ Process Chilled Water Data (Fiber) Percent of Power Demand □ Other Data (Copper) □ 480V 3p Required 12V DC LED Lighting Standard LED Lighting

vii. MATERIALS & INTERFACES (ChE)

WET LAB

Complex materials and chemical interfaces serve as the basis for nearly all modern technologies. The Chemical Engineering faculty and research groups study how the synthesis, processing and properties of these systems can be used to engineer products and devices with well-controlled or novel performance for a variety of applications. A fundamental goal is usually to understand the interplay between molecular chemistry and multi-scale structure to design materials and interfaces, and the processes used to prepare them.

WET LAB - (3) BAYS - 990 ASF

11'-0"

WET LAB - SECTIONS

Laboratory Performance Criteria

Laboratory Type: Wet Lab (ChE) Laboratory Function: Materials & Interfaces Description of Activities:

Vibration Control

10000

One-Third Octave Band Center Frequency (Hz)

Acoustic Control

NC-15 TEM / Recording
NC-20 SEM
NC-25 Dil Fridge
NC-30 High Perf Lab
NC-35 Conference
NC-40 Private Office
NC-45 Open Office
NC-50 Laboratory
No Requirement

Air Quality

□ ISO 3 1 □ ISO 4 10 □ ISO 5 100 □ ISO 6 1,000 □ ISO 7 10,000 □ ISO 8 100,000 ■ No Classification □ Laminar Flow □ Moveable T-stat

Electromagnetic Interference (EMI) Control

□ 100 nT RMS (300 nTp-p): General High Performance Lab
 □ 35 nT RMS (100 nTp-p): Dilution Refrigerator Lab
 □ 18 nT RMS (50 nTp-p): E Beam / FIB
 □ 11 nT RMS (30 nTp-p): SEM / TEM
 □ 4 nT RMS (10nTp-p): FEI Titan / JEOL 2100F

Infrastructure

- Clean Dry Air
- House Vacuum
- House Nitrogen (gas)
- House Helium (gas)
- Cylinder Gas Manifolds Qty 2
- Helium Recovery (Vertical)
- Other
- □ 480V 3p Required

Hot Water
Cold Water
RODI
Eyewash (Tempered Water)
Safety Shower (Tempered Water)
Other ______
Data (Fiber)
Data (Copper)
*floor drain

Temperature Control

Allowable Maximum Rate of Temperature Fluctuation

Humidity Control Power Density

30%-50% RH

□ 30%-50% RH Settable

□ No Humidification

Return Air Allowed

Desitive Pressure

Negative Pressure

□ +/- 2% RH

Local FCU (Remote)

- □ 5 W/sf (2W/sf demand)
- 10 W/sf (5W/sf demand)
- 20 W/sf (10W/sf demand)
- 30 W/sf (15W/sf demand) □ 50 W/sf (25W/sf demand)
- \square 80 W/sf (40 W/sf demand)
- \square 100 W/sf (50W/sf demand)
- Pump Power
- Instrument Power
- Clean Ground
- Emergency Power

Architectural

- ESD Flooring
- □ Seamless Flooring
- Cryo Safe Flooring
- Chemical Resistant Flooring
- Wall Mounts
- Ceiling Mounts
- Double Door
- Windows Allowed
- Fume Hood *(5) total per lab
- Snorkel Exhaust
- □ Biological Safety Cabinet
- HEPA Filter
- ULPA Filter
- □ Process Chilled Water
- Percent of Power Demand
- □ 12V DC LED Lighting
- Standard LED Lighting

IV. ROOM LIST

DETAILED ROOM LIST - NON-LAB SPACE - MATERIALS

MATERIALS Non-Lab Space

	No.	Unit Area	Total Area	Comment
Faculty Office	22	140	3,080	
Post Doc Office	42	70	2,940	9 Computational
Graduate Student Office	137	50	6,850	10 per open office max, 36 Computation
Technical Staff	9	120	1,080	8 current, 2 vacancy; 4 current SSLEC
Administrative Staff	13	120	1,560	11 currentrevised in conversation with Dawn; 3 SSLEC
Large Conference (40p)	1	800	800	
Medium Conference (15-20)	1	400	400	
Small Conference	1	200	200	
Board Room	1	400	400	
Visitor Office	-	140	-	
			-	
Secure Bike Storage	1		-	Outdoors
Receiving Room	1	120	120	Office Support Service
Storage	1	500	500	Files, finance, furniture
Mail Room / Copy Area	2	200	400	
Scholarly Activity	6	200	1,200	May be able to reduce if 4-5 story building
			-	
Classroom	-		-	
Seminar (100p)	-	2,000	-	
Seminar (50p)	1	1,000	1,000	
Seminar (40p)	1	800	800	
Poster Session Break Out	1	-	-	Outdoor patio
			-	
			-	
Total			21,330	
Revised: 2/24/17; 3/30/17				

DETAILED ROOM LIST - NON-LAB SPACE - ELECTRONICS & COMPUTER ENGINEERING

ECE Non-Lab Space				
	No.	Unit Area	Total Area	Comment
Faculty Office	12	140	1,680	11 current + 1 growth
Post Doc Office	22	70	1,540	22 current, per floor plan
Graduate Student Office	111	50	5,550	104 current, growth=x10%-3
Technical Staff	3	120	360	4 current, per floor plan - Stacia accounted for in MAT
Administrative Staff	5	120	600	4 current
Medium Conference (10-12)	1	300	300	1 current @ 173 asf
Copy/Supply	1	120	120	
Total			10,150	

DETAILED ROOM LIST - NON-LAB SPACE - CHEMICAL ENGINEERING

ChE Non-Lab Space				
	No.	Unit Area	Total Area	Comment
Faculty Office	-	140	-	
Post Doc Office	1	70	70	
Graduate Student Office	10	50	500	
Technical Staff	-	120	-	
Administrative Staff	-	120	-	
Total			570	

DETAILED ROOM LIST - LAB SPACE - STRUCTURAL MATERIALS

Dept.	Area	Description	General Lab	Wet Lab	Synthesis Lab	Laser Lab	Structural Lab	Characteriz ation	Control Room	Pump Closet	Microscopy Lab	MOCVD Lab	MBE Lab	Total
			Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays
MAT	Crystal Growth Casting	Ground Floor					3			0.50				3.50
MAT	Processing SPS Pressing	Ground Floor					3			0.50				3.50
MAT	Mech.Behav. Testing	GF if poss.					3			0.50				3.50
MAT	Blast laser					4				0.5				4.5
MAT	General Laser Optics	Pollock				3	i			0.5				3.5
MAT	General Laser	Gianola	1			2	!							3
MAT	Spec Prep, Wet Proc. Ceramic Process, Material Characterization		6							0.5				6.5
MAT	Future Hire in Structural		0											0
MAT	EDM 1bay, 3D Printing, 3D Powder		3											3
MAT	Thin Film, Proc. Furnaces	Non First Floor Non-High Bay					3			0.5				3.5
MAT	Total Structural		10			9	12			3.50				34.50
														0
MAT	Microscopy Expansion	Titan only							0.5	0.5	1.5			2.5
MAT	Structural Materials	Total	10			9	12		0.5	4.00	1.5			37

DETAILED ROOM LIST - LAB SPACE - ELECTRONICS & PHOTONICS (MATERIALS)

Dept.	Area	Description	General Lab	Wet Lab	Synthesis Lab	Laser Lab	Structural Lab	Characteri zation	Control Room	Pump Closet	Microscop y	MOCVD Lab	MBE Lab	Total
			Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays
MAT	MBE (10 systems-8 today)									4			10	14
MAT	MBE-Electrical Shop		0.5											0.5
MAT	MBE-Maintenance Shop		0.5											0.5
MAT	MBE-Storage													0
MAT	MBE-Gowning		0.5											0.5
МАТ	MBE-Total		1.5							4			10	15.5
МАТ	MBE-Large (Palmstrom's set-up)													0
MAT	MBE-Large-Storage													0
MAT	MBE-Large-Clean Assembly													0
МАТ	MBE Large Total													0
МАТ	MBE Total		1.5							4			10	15.5
МАТ	MOCVD Facility													
MAT	6 MOCVD Machines (6 current)									3		10.2		13.2
МАТ	Clean Prep, Parts Clean,		3.5											3.5
MAT	MOCVD Corridor	part of gross sf										0		0
MAT	MOCVD Total		3.5							3		10.2		16.7
MAT	Electropics & Photopics	Total							0	7		10.2	10	20.0
WIAT		Iotai	5		0	' '		U	U	/	U	10.2	10	32.2

DETAILED ROOM LIST - LAB SPACE - INORGANIC, SOFT, MACRO MATERIALS

Dept.	Area	Description	General Lab	Wet Lab	Synthesis Lab	Laser Lab	Structural Lab	Characteriz ation	Control Room	Pump Closet	Microscopy Lab	MOCVD Lab	MBE Lab	Total
			Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Total
MAT	Bates				2			1		0				3
MAT	Chabinyc				2			1		0				3
MAT	Wilson				2			1		0				3
MAT	Seshadri				0			0		0				0
MAT	BioMacro-New Hire 2017				2			1		0	1			3
MAT	Inorganic-New Hire 2017				2			1		0				3
MAT	Inorganic-New Hire 2018	to HH			0			0		0				0
MAT	Senior Faculty		1		6			0		0				6
MAT	Senior Faculty	eliminate	1		0			0		0				0
MAT	Shared				0			0		1				1
МАТ	Note: eliminated New Segalman = pump	4 syn + 2 char + 2												
MAT	Inorganic Materials	Total	0	0	16	0	0	5	0	1	0	0	0	22

DETAILED ROOM LIST - LAB SPACE - ELECTRONICS & PHOTONICS (ECE)

Dept.	Area	Last Name	General Lab	Wet Lab	Synthesis Lab	Laser Lab	Structural Lab	Characteriz ation	Control Room	Pump Closet	Microscopy Lab	MOCVD Lab	MBE Lab	Totals	
			Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	
ECE	12 Faculty Labs	Current = 11; growth+1 fac	2			31									33
	3 bays/7 faculty; 2 bays/5 faculty; s hoods	share 2 Syn labs w/fume													
															-
ECE	Electronics & Photonics	Total	2	0	0	31	0	0	0	0	0	0	0		33

DETAILED ROOM LIST - LAB SPACE - MATERIALS & INTERFACES (ChE)

Dept.	Area	Description	General Lab	Wet Lab	Synthesis Lab	Laser Lab	Structural Lab	Characteriz ation	Control Room	Pump Closet	Microscopy Lab	MOCVD Lab	MBE Lab	TOTALS
			Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays	Bays
ChE	ChemE Space for Engr II Swap	Segalman		6										6
ChE	Materials and Interfaces	Total	0	6	0	0	0	0	0	0	0	0	0	(

V. APPENDIX

RELEASED SPACE

As a result of the additional assignable square footage proposed in the new building, space within the three existing buildings will be released for renovation. The goal of the released space renovation work is to consolidate the departments within the College of Engineering, which are currently spread out over several campus spaces. A conceptual summary of the proposed release space renovation work is outlined in the diagram below. This diagram represents a general consolidation of the departments in concept only. This is not meant to allocate specific spaces within each building. Further review of the released space program will be required during subsequent phases of design.

ENGINEERING II (RENOVATED)

ENGINEERING SCIENCE BUILDING (RENOVATED)

HAROLD FRANK HALL (RENOVATED)

ENGINEERING III (NEW CONSTRUCTION)

RELEASED SPACE

ENGINEERING II (RENOVATED)

Engineering II will be the home of Chemical Engineering, Mechanical Engineering and the COE Machine Shop. Two existing facilities, ECE's Teaching Cleanroom and Materials' Large MBE will remain in their current locations in EII. As a home to ChemE and ME, EII renovations will include an upgrade to the existing infrastructure to better serve the needs of research in these areas, including, but not limited to an HVAC upgrade that includes better controls of humidity and temperature. The courtyard Addition will more efficiently utilize the building footprint and given the very large unmet space need, even after Engineering III is constructed, will allow COE to accommodate leaving the Large MBE and Teaching Cleanroom in the building and anticipated growth of both ChemE, ME and other departments. Further thought and planning will need to proceed, at the appropriate time, for this space.

ENGINEERING SCIENCE BUILDING (RENOVATED)

ESB will be home to Electrical and Computer Engineering. Faculty offices, research labs and the department's administrative offices will relocate from Harold Frank Hall to the newly vacated ESB space. The anticipated renovations may include minor rework of existing office space to accommodate the administrative staff and also some minimal changes to the research lab space. ESB will continue to be the home of the College's Nanofabrication Facility on the first floor.

HAROLD FRANK HALL (RENOVATED)

HFH will be the home for Computer Science and include space for the Electrical and Computer Engineering teaching labs and the Dean's Office. As the home for Computer Science, the renovation will need to bring this 50-plus year old building into the modern era, with a renovation where aesthetics is as important as infrastructure. Computer Science continues to increase their reputation nationally and internationally, as such the building needs to reflect this stature. CS seeks a collaborative space, with opportunities for interaction on each floor, modular labs, conference rooms and appropriate space for faculty, staff and students. The following page includes a list of visioning objectives that the Department is very interested in achieving. These should be viewed as a starting point for the renovation discussion that will follow the Engineering III Building project. Finally, since HFH is a 50-plus year old building, an infrastructure upgrade, especially HVAC, will need to be included in this renovation.

RELEASED SPACE

COMPUTER SCIENCE - Visioning Objectives for Harold Frank Hall

This list is based on meetings with Ambuj Singh and Giovanni Vigna, who have consulted with their colleagues. This is a starting point for discussion on what Harold Frank Hall may look like in the future, to serve Computer Science's needs.

- 1. Rework the building's main entrance to the east side. Create a true presence with this entrance. Create an atrium that spans multiple floors.
- 2. Create conference room space on the roof, as outlined in the 2013 Concept Study by M+M Creative Studio.
- 3. Flip office and lab locations within the building. Offices on the south to capture the ocean views and labs on the north.
- 4. Meeting spaces on all floors. Mix of large and smaller conference rooms alternating floors. For example, 1 large on second, 2 small on third and so forth.
- 5. Outside deck on top of first floor Dean's wing.
- 6. Add office space on top of north mechanical rooms, per Concept Study.
- 7. Consolidate ECE Teaching space to the first floor.
- 8. Consolidate Administrative Office spaces. Some at entrance on first floor and some on second floor. Be cognizant of student traffic and investigate best location for these staff.
- 9. Lower windows on the south side of the building.
- 10. Proper restrooms on each floor. Include a shower (both men's and women's) in one of the restroom locations.
- 11. Modular labs. Some labs connected for faculty to work together or ability to have singular labs. Lab module is in the 400-500 ASF range.
- 12. Higher ceilings in the building to add some character.
- 13. Interaction space on each floor with sink and coffee bar.
- 14. Graduate Student Lounge meeting space.
- 15. Undergraduate Student meeting space for Capstone projects.

MOCVD & MBE ADJACENCY STUDY

Looking ahead to subsequent stages of design, the following study explored the potential adjacencies between the MOCVD group and the MBE group on the ground floor of the new Engineering III building. The MOCVD group shares many of the same prep lab types, pump closets, gas storage and distribution needs, and envinromental criteria with the MBE group. Both labs require ground floor space with direct access to the exterior. Both labs will require specific gowning protocols before entering the shared corridor. The shared corridor may require HPM designations and fire protection criteria common to both lab groups.

This study also helps to demonstrate program efficiencies by acheiving additional assignable square footage within the same bay count as the standalone lab diagrams would indicate. By removing walls, more tools can fit within the same program area. By reducing the overall width of the pump closets from 11ft to 7ft, space can be allocated back to functional tool areas. Sharing process hoods among a greater quantity of tools allows for more functional tool areas and a greater number of future tools.

This is a preliminary concept only, and further review will be required during subsequent stages of design.

MEETING 3 TOTALS

MBE

MBE LAB	10.0 BAYS (10 TOOLS)
PUMP	4.0 BAYS
MAINT/ELEC	1.0 BAY
MBE GOWN	0.5 BAYS

TOTAL	15.5 BAYS
AREA	5,115 ASF

MBE LAB (5x)

PUMP (4x)

MAINT/ELEC

MBE

PROPOSED

0.2 BAYS
0.4 BAYS
2.0 BAYS
INCLUDED IN LAB
12.0 BAYS (10 TOOLS)

TOTAL	14.6 BAYS
AREA	4,818 ASF

MBE LAB (2x)

MAINTENANCE

11'-0"

MOCVD

MEETING 3 TOTALS

MOCVD LAB14.2 BAYS (7 TOOLS) *two bays added back during post-meetingPUMP2.0 BAYSCLEAN PREP2.0 BAYSPARTS CLEAN1.0 BAYSMOCVD GOWN0.5 BAYS

 TOTAL
 16.7 BAYS

 AREA
 5,511 ASF

MOCVD LAB (3x)

MOCVD

PROPOSED

MOCVD LAB	14.0 BAYS (8 TOOLS)
PUMP	INCLUDED IN LAB
CLEAN PREP	2.0 BAYS
PARTS CLEAN	1.0 BAYS
MOCVD GOWN	0.4 BAYS
STORAGE	0.2 BAYS

TOTAL AREA **17.6 BAYS** 5,808 ASF

Life. Science. Architecture, Inc.

MEETING 3 TOTALS

MBE LAB PUMP MAINT/ELEC MBE GOWN	10.0 BAYS (10 TOOLS) 4.0 BAYS 1.0 BAY 0.5 BAYS	MOCVD LAB PUMP CLEAN PREP PARTS CLEAN MOCVD GOWN	14.2 BAYS (7 TOOLS) 2.0 BAYS 2.0 BAYS 1.0 BAYS 0.5 BAYS
TOTAL (MBE)	15.5 BAYS		
AREA	5,115 ASF	TOTAL (MOCVD)	16.7 BAYS
		AREA	5,511 ASF
TOTAL (COMBINED)	32.2 BAYS		
AREA	10,626 ASF		
<u> </u>		154:-0*	
		i i i	1 I I I I

MBE SUITE

MBE + MOCVD ADJACENCY

PROPOSED

PROPOSED

	12.0 BAYS (10 TOOLS)		14.0 BAYS (8 100LS)
PUMP	INCLUDED IN LAB	PUMP	INCLUDED IN LAB
MAINT/ELEC	2.0 BAYS	CLEAN PREP	2.0 BAYS
MBE GOWN	0.4 BAYS	PARTS CLEAN	1.0 BAYS
STORAGE	0.2 BAYS	MOCVD GOWN	0.4 BAYS
		STORAGE	0.2 BAYS
TOTAL	14.6 BAYS		
AREA	4,818 ASF	TOTAL	17.6 BAYS
		AREA	5,808 ASF
TOTAL (COMBINED)	32.2 BAVS		

AREA

10,626 ASF

MBE + MOCVD GROUND FLOOR OPTION?

- 1. REMOVE WALLS (MORE EFFICIENT / MORE TOOLS PER ROOM)
- 2. REDUCE WIDTH OF PUMP CLOSETS TO 7FT CLEAR (SINGLE SIDED)
- 3. REDUCE QTY OF PROCESS HOODS (MBE)
- 4. ADD BACK MBE ELEC PREP & MBE MAINTENANCE (2 BAYS TOTAL)
- 5. 10 MBE TOOLS + 8 MOCVD TOOLS
- 6. SAME TOTAL BAYS, SAME TOTAL ASF
- 7. COULD GAS STORAGE BE MOVED TO GROSS? BUILDING SUPPORT? GAS YARD?
- 8. COMMON HPM CORRIDOR

EXISTING SPACE - COLLEGE OF ENGINEERING

COLLEGE OF ENGINEERING	TOTALS			
	RM COUNT	ASF	AVG	%
MATERIALS (MAT)	123	37,044	301	17%
ELECTRICAL & COMPUTER ENGINEERING (ECE)	210	72,612	346	34%
CHEMICAL ENGINEERING (ChE)	97	35,507	366	17%
COMPUTER SCIENCE (CS)	75	21,248	283	10%
MECHANICAL ENGINEERING (ME)	96	29,404	306	14%
DEAN'S OFFICE	20	3,575	179	2%
COMPUTING INFRASTRUCTURE	18	2,644	147	1%
I&R GENERAL	24	9,859	411	5%
TOTALS	663	211,893		

NOTE: The College of Engineering also occupies 77,347 ASF in other permanent and temporary buildings and trailers elsewhere on campus.

EXISTING SPACE COMPARISON BY BLDG

TOTALS	EII		ESB		HFH	
	RM CT	ASF	RM CT	ASF	RM CT	ASF
MATERIALS (MAT)	105	32,199	18	4,845	0	0
ELECTRICAL & COMPUTER ENGINEERING (ECE)	14	6,081	100	32,534	96	33,997
CHEMICAL ENGINEERING (ChE)	86	30,993	11	4,514	0	0
COMPUTER SCIENCE (CS)	0	0	0	0	75	21,248
MECHANICAL ENGINEERING (ME)	67	22,160	29	7,244	0	0
DEAN'S OFFICE	0	0	0	0	20	3,575
COMPUTING INFRASTRUCTURE	1	206	7	436	10	2,002
I&R GENERAL	16	4,726	8	5,133	0	0
TOTALS	289	96,365	173	54,706	201	60,822

Chemical Engineering
 Computer Science
 Mechanical Engineering
 Dean College of Engineering
 Engineering Computing Infrastructure

Engineering-I&R General

ENGINEERING II - LEVEL 1

ENGINEERING II (EII)	LEVEL 1	
	RM CT	ASF
MATERIALS (MAT)	59	18,692
ELECTRICAL & COMPUTER ENGINEERING (ECE)	14	6,081
CHEMICAL ENGINEERING (ChE)	7	4,599
COMPUTER SCIENCE (CS)		
MECHANICAL ENGINEERING (ME)		
DEAN'S OFFICE		
COMPUTING INFRASTRUCTURE	1	206
I&R GENERAL	16	4,726
TOTALS	97	34,304

ENGINEERING II - LEVEL 2

ENGINEERING II (EII)	LEVEL 2	
	RM CT ASF	
MATERIALS (MAT)	26	9,135
ELECTRICAL & COMPUTER ENGINEERING (ECE)		
CHEMICAL ENGINEERING (ChE)		
COMPUTER SCIENCE (CS)		
MECHANICAL ENGINEERING (ME)	64	21,560
DEAN'S OFFICE		
COMPUTING INFRASTRUCTURE		
I&R GENERAL		
TOTALS	90	30,695

ENGINEERING II - LEVEL 3

ENGINEERING II (EII)	LEV	EL 3
	RM CT	ASF
MATERIALS (MAT)	20	4,372
ELECTRICAL & COMPUTER ENGINEERING (ECE)		
CHEMICAL ENGINEERING (ChE)	79	26,394
COMPUTER SCIENCE (CS)		
MECHANICAL ENGINEERING (ME)	3	600
DEAN'S OFFICE		
COMPUTING INFRASTRUCTURE		
I&R GENERAL		
TOTALS	102	31,366

ENGINEERING SCIENCE BUILDING - LEVEL 1

ENGINEERING SCIENCE (ESB)	LEVEL 1	
	RM CT	ASF
MATERIALS (MAT)		
ELECTRICAL & COMPUTER ENGINEERING (ECE)	39	16,569
CHEMICAL ENGINEERING (ChE)		
COMPUTER SCIENCE (CS)		
MECHANICAL ENGINEERING (ME)		
DEAN'S OFFICE		
COMPUTING INFRASTRUCTURE	3	273
I&R GENERAL	4	3,313
TOTALS	46	20,155

ENGINEERING SCIENCE BUILDING - LEVEL 2

ENGINEERING SCIENCE (ESB)	LEVEL 2	
	RM CT	ASF
MATERIALS (MAT)		
ELECTRICAL & COMPUTER ENGINEERING (ECE)	41	11,003
CHEMICAL ENGINEERING (ChE)		
COMPUTER SCIENCE (CS)		
MECHANICAL ENGINEERING (ME)	20	5,236
DEAN'S OFFICE		
COMPUTING INFRASTRUCTURE	2	79
I&R GENERAL	3	1,759
TOTALS	66	18,077

ENGINEERING SCIENCE BUILDING - LEVEL 3

ENGINEERING SCIENCE (ESB)	LEVEL 3	
	RM CT	ASF
MATERIALS (MAT)	18	4,845
ELECTRICAL & COMPUTER ENGINEERING (ECE)	20	4,962
CHEMICAL ENGINEERING (ChE)	11	4,514
COMPUTER SCIENCE (CS)		
MECHANICAL ENGINEERING (ME)	9	2,008
DEAN'S OFFICE		
COMPUTING INFRASTRUCTURE	2	84
I&R GENERAL	1	61
TOTALS	61	16,474

HAROLD FRANK HALL - LEVEL 1

HAROLD FRANK HALL (HFH)	LEVEL 1	
	RM CT	ASF
MATERIALS (MAT)		
ELECTRICAL & COMPUTER ENGINEERING (ECE)	5	4,040
CHEMICAL ENGINEERING (ChE)		
COMPUTER SCIENCE (CS)	19	5,160
MECHANICAL ENGINEERING (ME)		
DEAN'S OFFICE	20	3,575
COMPUTING INFRASTRUCTURE		
I&R GENERAL		
TOTALS	44	12,775

HAROLD FRANK HALL - LEVEL 2

HAROLD FRANK HALL (HFH)	LEVEL 2		
	RM CT	ASF	
MATERIALS (MAT)			
ELECTRICAL & COMPUTER ENGINEERING (ECE)	4	2,498	
CHEMICAL ENGINEERING (ChE)			
COMPUTER SCIENCE (CS)	36	9,451	
MECHANICAL ENGINEERING (ME)			
DEAN'S OFFICE			
COMPUTING INFRASTRUCTURE			
I&R GENERAL			
TOTALS	40	11,949	

Life. Science. Architecture, Inc.

HAROLD FRANK HALL - LEVEL 3

HAROLD FRANK HALL (HFH)	LEVEL 3		
	RM CT	ASF	
MATERIALS (MAT)			
ELECTRICAL & COMPUTER ENGINEERING (ECE)	31	8,501	
CHEMICAL ENGINEERING (ChE)			
COMPUTER SCIENCE (CS)	6	1,670	
MECHANICAL ENGINEERING (ME)			
DEAN'S OFFICE			
COMPUTING INFRASTRUCTURE	9	1,809	
I&R GENERAL			
TOTALS	46	11,980	

HAROLD FRANK HALL - LEVEL 4

HAROLD FRANK HALL (HFH)	LEVEL 4		
	RM CT	ASF	
MATERIALS (MAT)			
ELECTRICAL & COMPUTER ENGINEERING (ECE)	33	11,945	
CHEMICAL ENGINEERING (ChE)			
COMPUTER SCIENCE (CS)			
MECHANICAL ENGINEERING (ME)			
DEAN'S OFFICE			
COMPUTING INFRASTRUCTURE			
I&R GENERAL			
TOTALS	33	11,945	

Life. Science. Architecture, Inc.

HAROLD FRANK HALL - LEVEL 5

HAROLD FRANK HALL (HFH)	LEVEL 5		
	RM CT	ASF	
MATERIALS (MAT)			
ELECTRICAL & COMPUTER ENGINEERING (ECE)	23	7,013	
CHEMICAL ENGINEERING (ChE)			
COMPUTER SCIENCE (CS)	14	4,967	
MECHANICAL ENGINEERING (ME)			
DEAN'S OFFICE			
COMPUTING INFRASTRUCTURE	1	193	
I&R GENERAL			
TOTALS	38	12,173	

PROPOSED SPACE - ENGINEERING III BUILDING

COLLEGE OF ENGINEERING	TOTALS				E III (PROPOSED)		
	RM COUNT	ASF	AVG	%	BAYS	ASF	
MATERIALS (MAT)	123	37,044	301	17%	91.2	51,426	
ELECTRICAL & COMPUTER ENGINEERING (ECE)	210	72,612	346	34%	33	21,040	
CHEMICAL ENGINEERING (ChE)	97	35,507	366	17%	6	2,550	
COMPUTER SCIENCE (CS)	75	21,248	283	10%			
MECHANICAL ENGINEERING (ME)	96	29,404	306	14%			
DEAN'S OFFICE	20	3,575	179	2%			
COMPUTING INFRASTRUCTURE	18	2,644	147	1%			
I&R GENERAL	24	9,859	411	5%			
TOTALS	663	211,893			130.2	75,016	

SPACE COMPARISON BY BLDG

TOTALS	EII	EII		ESB			E III (PROPOS	E III (PROPOSED)	
	RM CT	ASF	RM CT	ASF	RM C	r ASF	BAYS	ASF	
MATERIALS (MAT)	105	32,199	18	4,845		0 0	91.2	51,426	
ELECTRICAL & COMPUTER ENGINEERING (ECE)	14	6,081	100	32,534	9	96 33,997	33	21,040	
CHEMICAL ENGINEERING (ChE)	86	30,993	11	4,514		0 0	6	2,550	
COMPUTER SCIENCE (CS)	0	0	0	0		75 21,248			
MECHANICAL ENGINEERING (ME)	67	22,160	29	7,244		0 0			
DEAN'S OFFICE	0	0	0	0	:	3,575			
COMPUTING INFRASTRUCTURE	1	206	7	436		2,002			
I&R GENERAL	16	4,726	8	5,133		0 0			
TOTALS	289	96,365	173	54,706	20	60,822	130.2	75,016	

Life. Science. Architecture, Inc.

